IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v386y2007i2p686-691.html
   My bibliography  Save this article

A review of fractality and self-similarity in complex networks

Author

Listed:
  • Gallos, Lazaros K.
  • Song, Chaoming
  • Makse, Hernán A.

Abstract

We review recent findings of self-similarity in complex networks. Using the box-covering technique, it was shown that many networks present a fractal behavior, which is seemingly in contrast to their small-world property. Moreover, even non-fractal networks have been shown to present a self-similar picture under renormalization of the length scale. These results have an important effect in our understanding of the evolution and behavior of such systems. A large number of network properties can now be described through a set of simple scaling exponents, in analogy with traditional fractal theory.

Suggested Citation

  • Gallos, Lazaros K. & Song, Chaoming & Makse, Hernán A., 2007. "A review of fractality and self-similarity in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(2), pages 686-691.
  • Handle: RePEc:eee:phsmap:v:386:y:2007:i:2:p:686-691
    DOI: 10.1016/j.physa.2007.07.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107007741
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.07.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    2. Yu-Hsiang Fu & Chung-Yuan Huang & Chuen-Tsai Sun, 2017. "A community detection algorithm using network topologies and rule-based hierarchical arc-merging strategies," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-30, November.
    3. Ikeda, Nobutoshi, 2021. "Stratified structure of fractal scale-free networks generated by local rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    4. Ma, Jing & Li, Dandan & Tian, Zihao, 2016. "Rumor spreading in online social networks by considering the bipolar social reinforcement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 108-115.
    5. Ikeda, Nobutoshi, 2019. "Growth model for fractal scale-free networks generated by a random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 424-434.
    6. Liu, Ying & Tang, Ming & Zhou, Tao & Do, Younghae, 2016. "Identify influential spreaders in complex networks, the role of neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 289-298.
    7. Chen, Jin & Le, Anbo & Wang, Qin & Xi, Lifeng, 2016. "A small-world and scale-free network generated by Sierpinski Pentagon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 126-135.
    8. Feng, Shiyuan & Weng, Tongfeng & Chen, Xiaolu & Ren, Zhuoming & Su, Chang & Li, Chunzi, 2024. "Scaling law of diffusion processes on fractal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    9. Rosenberg, Eric, 2018. "Generalized Hausdorff dimensions of a complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 1-17.
    10. Li, Dongyan & Wang, Xingyuan & Huang, Penghe, 2017. "A fractal growth model: Exploring the connection pattern of hubs in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 200-211.
    11. Fu, Yu-Hsiang & Huang, Chung-Yuan & Sun, Chuen-Tsai, 2016. "Using a two-phase evolutionary framework to select multiple network spreaders based on community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 840-853.
    12. Xi, Lifeng & Wang, Lihong & Wang, Songjing & Yu, Zhouyu & Wang, Qin, 2017. "Fractality and scale-free effect of a class of self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 31-40.
    13. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    14. Rasul Kochkarov & Azret Kochkarov, 2022. "Introduction to the Class of Prefractal Graphs," Mathematics, MDPI, vol. 10(14), pages 1-17, July.
    15. Maiorino, Enrico & Livi, Lorenzo & Giuliani, Alessandro & Sadeghian, Alireza & Rizzi, Antonello, 2015. "Multifractal characterization of protein contact networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 302-313.
    16. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2014. "Assessing the effectiveness of real-world network simplification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 134-146.
    17. Jiang, Jincheng & Xu, Zhihua & Zhang, Zhenxin & Zhang, Jie & Liu, Kang & Kong, Hui, 2023. "Revealing the fractal and self-similarity of realistic collective human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    18. Karimui, Reza Yaghoobi, 2021. "A new approach to measure the fractal dimension of a trajectory in the high-dimensional phase space," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    19. Craig, Adam & Yücel, Mesut & Muchnik, Lev & Hershberg, Uri, 2022. "Impact of finite size effect on applicability of generalized fractal and spectral dimensions to biological networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Liudvikas Kaklauskas & Leonidas Sakalauskas, 2013. "Study of on-line measurement of traffic self-similarity," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 63-84, January.
    21. Xu, Yan & Gurfinkel, Aleks Jacob & Rikvold, Per Arne, 2014. "Architecture of the Florida power grid as a complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 130-140.
    22. Dai, Meifeng & Shao, Shuxiang & Su, Weiyi & Xi, Lifeng & Sun, Yanqiu, 2017. "The modified box dimension and average weighted receiving time of the weighted hierarchical graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 46-58.
    23. Ikeda, Nobutoshi, 2020. "Fractal networks induced by movements of random walkers on a tree graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:386:y:2007:i:2:p:686-691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.