IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2500-d865499.html
   My bibliography  Save this article

Introduction to the Class of Prefractal Graphs

Author

Listed:
  • Rasul Kochkarov

    (Department of Data Analysis and Machine Learning, Faculty of Information Technology and Big Data Analysis, Financial University under the Government of the Russian Federation, Leningradsky Prospekt 49/2, 125167 Moscow, Russia)

  • Azret Kochkarov

    (Department of Data Analysis and Machine Learning, Faculty of Information Technology and Big Data Analysis, Financial University under the Government of the Russian Federation, Leningradsky Prospekt 49/2, 125167 Moscow, Russia
    Moscow Aviation Institute, National Research University, Volokolamskoe shosse 4, 125993 Moscow, Russia)

Abstract

Fractals are already firmly rooted in modern science. Research continues on the fractal properties of objects in physics, chemistry, biology and many other scientific fields. Fractal graphs as a discrete representation are used to model and describe the structure of various objects and processes, both natural and artificial. The paper proposes an introduction to prefractal graphs. The main definitions and notation are proposed—the concept of a seed, the operations of processing a seed, the procedure for generating a prefractal graph. Canonical (typical) and non-canonical (special) types of prefractal graphs are considered separately. Important characteristics are proposed and described—the preservation of adjacency of edges for different ranks in the trajectory. The definition of subgraph-seeds of different ranks is given separately. Rules for weighting a prefractal graph by natural numbers and intervals are proposed. Separately, the definition of a fractal graph as infinite is given, and the differences between the concepts of fractal and prefractal graphs are described. At the end of the work, already published works of the authors are proposed, indicating the main backlogs, as well as a list of directions for new research. This work is the beginning of a cycle of works on the study of the properties and characteristics of fractal and prefractal graphs.

Suggested Citation

  • Rasul Kochkarov & Azret Kochkarov, 2022. "Introduction to the Class of Prefractal Graphs," Mathematics, MDPI, vol. 10(14), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2500-:d:865499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2500/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Komjáthy, Júlia & Simon, Károly, 2011. "Generating hierarchial scale-free graphs from fractals," Chaos, Solitons & Fractals, Elsevier, vol. 44(8), pages 651-666.
    2. Gallos, Lazaros K. & Song, Chaoming & Makse, Hernán A., 2007. "A review of fractality and self-similarity in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(2), pages 686-691.
    3. A. Kochkarov A. & N. Kalashnikov V. & R. Kochkarov A. & А. Кочкаров А. & Н. Калашников В. & Р. Кочкаров А., 2020. "Выявление ботов в социальных сетях на примере LiveJournal // Identifying Bots in Social Networks Using the Example of LiveJournal," Мир новой экономики // The world of new economy, Финансовый университет при Правительстве Российской Федерации // Financial University under The Governtment оf The Russian Federation, vol. 14(2), pages 44-50.
    4. Ikeda, Nobutoshi, 2021. "Stratified structure of fractal scale-free networks generated by local rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    5. Rasul Kochkarov, 2022. "Multicriteria Optimization Problem on Prefractal Graph," Mathematics, MDPI, vol. 10(6), pages 1-17, March.
    6. F. Liberatore & M. Camacho-Collados, 2016. "A Comparison of Local Search Methods for the Multicriteria Police Districting Problem on Graph," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, March.
    7. Moreno-Pulido, Soledad & Pavón-Domínguez, Pablo & Burgos-Pintos, Pedro, 2021. "Temporal evolution of multifractality in the Madrid Metro subway network," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Gong, Helin & Jin, Xian’an, 2017. "A general method for computing Tutte polynomials of self-similar graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 117-129.
    9. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    10. Criado-Alonso, Ángeles & Battaner-Moro, Elena & Aleja, David & Romance, Miguel & Criado, Regino, 2021. "Enriched line graph: A new structure for searching language collocations," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boris V. Rumiantsev & Rasul A. Kochkarov & Azret A. Kochkarov, 2023. "Graph-Clustering Method for Construction of the Optimal Movement Trajectory under the Terrain Patrolling," Mathematics, MDPI, vol. 11(1), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasul Kochkarov, 2021. "Research of NP-Complete Problems in the Class of Prefractal Graphs," Mathematics, MDPI, vol. 9(21), pages 1-20, October.
    2. Xi, Lifeng & Wang, Lihong & Wang, Songjing & Yu, Zhouyu & Wang, Qin, 2017. "Fractality and scale-free effect of a class of self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 31-40.
    3. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    4. Ikeda, Nobutoshi, 2020. "Fractal networks induced by movements of random walkers on a tree graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    5. Feng, Shiyuan & Weng, Tongfeng & Chen, Xiaolu & Ren, Zhuoming & Su, Chang & Li, Chunzi, 2024. "Scaling law of diffusion processes on fractal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    6. Rosenberg, Eric, 2018. "Generalized Hausdorff dimensions of a complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 1-17.
    7. Dai, Meifeng & Shao, Shuxiang & Su, Weiyi & Xi, Lifeng & Sun, Yanqiu, 2017. "The modified box dimension and average weighted receiving time of the weighted hierarchical graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 46-58.
    8. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    9. Yu-Hsiang Fu & Chung-Yuan Huang & Chuen-Tsai Sun, 2017. "A community detection algorithm using network topologies and rule-based hierarchical arc-merging strategies," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-30, November.
    10. Ikeda, Nobutoshi, 2019. "Growth model for fractal scale-free networks generated by a random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 424-434.
    11. Zeng, Cheng & Xue, Yumei & Huang, Yuke, 2021. "Fractal networks with Sturmian structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    12. Huang, Yuke & Zhang, Hanxiong & Zeng, Cheng & Xue, Yumei, 2020. "Scale-free and small-world properties of a multiple-hub network with fractal structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    13. Ikeda, Nobutoshi, 2021. "Stratified structure of fractal scale-free networks generated by local rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    14. Chen, Jin & Le, Anbo & Wang, Qin & Xi, Lifeng, 2016. "A small-world and scale-free network generated by Sierpinski Pentagon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 126-135.
    15. Fu, Yu-Hsiang & Huang, Chung-Yuan & Sun, Chuen-Tsai, 2016. "Using a two-phase evolutionary framework to select multiple network spreaders based on community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 840-853.
    16. Maiorino, Enrico & Livi, Lorenzo & Giuliani, Alessandro & Sadeghian, Alireza & Rizzi, Antonello, 2015. "Multifractal characterization of protein contact networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 302-313.
    17. Jiang, Jincheng & Xu, Zhihua & Zhang, Zhenxin & Zhang, Jie & Liu, Kang & Kong, Hui, 2023. "Revealing the fractal and self-similarity of realistic collective human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    18. Craig, Adam & Yücel, Mesut & Muchnik, Lev & Hershberg, Uri, 2022. "Impact of finite size effect on applicability of generalized fractal and spectral dimensions to biological networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    19. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    20. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2500-:d:865499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.