IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v637y2024ics0378437123010427.html
   My bibliography  Save this article

An efficient multi-modal urban transportation network partitioning approach for three-dimensional macroscopic fundamental diagram

Author

Listed:
  • Tang, Siyi
  • Zheng, Fangfang
  • Zheng, Nan
  • Liu, Xiaobo

Abstract

The three-dimensional macroscopic fundamental diagram (3D-MFD) provides a comprehensive understanding of the relationship between network efficiency and accumulation of cars and buses in transportation networks. In this paper, we propose a novel approach to partition multi-modal urban transportation networks into several homogeneous sub-regions to obtain well-shaped 3D-MFDs for each sub-region. The proposed approach consists of three stages: an initial partitioning process using the Symmetric Non-negative Matrix Factorization (SNMF) and Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), iterative merging of the initial partitioned sub-regions based on SNMF and TOPSIS, and optimization of the sub-regional boundaries, considering the traffic network's link hierarchy, to accurately capture its physical characteristics. Comparative experiments utilizing real data from the Zurich traffic network demonstrate that our proposed method achieves remarkable partitioning results, as supported by evaluation metrics. Furthermore, the partitioning results obtained through our proposed approach exhibit more favorable network physical characteristics, providing a solid foundation for implementing control strategies to enhance network efficiency.

Suggested Citation

  • Tang, Siyi & Zheng, Fangfang & Zheng, Nan & Liu, Xiaobo, 2024. "An efficient multi-modal urban transportation network partitioning approach for three-dimensional macroscopic fundamental diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
  • Handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437123010427
    DOI: 10.1016/j.physa.2023.129487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123010427
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    2. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    3. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.
    4. Geroliminis, Nikolas & Sun, Jie, 2011. "Properties of a well-defined macroscopic fundamental diagram for urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 605-617, March.
    5. Guo, Yajuan & Yang, Licai & Hao, Shenxue & Gu, Xinxin, 2021. "Perimeter traffic control for single urban congested region with macroscopic fundamental diagram and boundary conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    6. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    7. Ji, Yuxuan & Geroliminis, Nikolas, 2012. "On the spatial partitioning of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1639-1656.
    8. Loder, Allister & Dakic, Igor & Bressan, Lea & Ambühl, Lukas & Bliemer, Michiel C.J. & Menendez, Monica & Axhausen, Kay W., 2019. "Capturing network properties with a functional form for the multi-modal macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 1-19.
    9. Wu, Chao-Yun & Li, Ming & Jiang, Rui & Hao, Qing-Yi & Hu, Mao-Bin, 2018. "Perimeter control for urban traffic system based on macroscopic fundamental diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 231-242.
    10. Geroliminis, Nikolas, 2015. "Cruising-for-parking in congested cities with an MFD representation," Economics of Transportation, Elsevier, vol. 4(3), pages 156-165.
    11. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2016. "Clustering of heterogeneous networks with directional flows based on “Snake” similarities," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 250-269.
    12. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    13. Liu, Wei & Geroliminis, Nikolas, 2017. "Doubly dynamics for multi-modal networks with park-and-ride and adaptive pricing," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 162-179.
    14. Ding, Heng & Qian, Yu & Zheng, Xiaoyan & Bai, Haijian & Wang, Shiguang & Zhou, Jingwen, 2022. "Dynamic parking charge–perimeter control coupled method for a congested road network based on the aggregation degree characteristics of parking generation distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    15. Qiu, Guo & Song, Rui & He, Shiwei & Yin, Weichuan, 2018. "The pedestrian flow characteristics of Y-shaped channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 199-212.
    16. Gao, Shengling & Li, Daqing & Zheng, Nan & Hu, Ruiqi & She, Zhikun, 2022. "Resilient perimeter control for hyper-congested two-region networks with MFD dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 50-75.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Heng & Di, Yunran & Feng, Zhongxiang & Zhang, Weihua & Zheng, Xiaoyan & Yang, Tao, 2022. "A perimeter control method for a congested urban road network with dynamic and variable ranges," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 160-187.
    2. Zheng, Nan & Geroliminis, Nikolas, 2020. "Area-based equitable pricing strategies for multimodal urban networks with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 357-374.
    3. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    4. Ambühl, Lukas & Loder, Allister & Bliemer, Michiel C.J. & Menendez, Monica & Axhausen, Kay W., 2020. "A functional form with a physical meaning for the macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 119-132.
    5. Batista, S.F.A. & Leclercq, Ludovic & Geroliminis, Nikolas, 2019. "Estimation of regional trip length distributions for the calibration of the aggregated network traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 192-217.
    6. Anupriya, & Bansal, Prateek & Graham, Daniel J., 2023. "Congestion in cities: Can road capacity expansions provide a solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    7. Gao, Shengling & Li, Daqing & Zheng, Nan & Hu, Ruiqi & She, Zhikun, 2022. "Resilient perimeter control for hyper-congested two-region networks with MFD dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 50-75.
    8. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.
    9. Dantsuji, Takao & Takayama, Yuki & Fukuda, Daisuke, 2023. "Perimeter control in a mixed bimodal bathtub model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 267-291.
    10. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.
    11. Kouvelas, Anastasios & Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Enhancing model-based feedback perimeter control with data-driven online adaptive optimization," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 26-45.
    12. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    13. Gu, Ziyuan & Safarighouzhdi, Farshid & Saberi, Meead & Rashidi, Taha H., 2021. "A macro-micro approach to modeling parking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 220-244.
    14. Ampountolas, Konstantinos & Zheng, Nan & Geroliminis, Nikolas, 2017. "Macroscopic modelling and robust control of bi-modal multi-region urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 616-637.
    15. Ge, Qian & Fukuda, Daisuke, 2019. "A macroscopic dynamic network loading model for multiple-reservoir system," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 502-527.
    16. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    17. Mohajerpoor, Reza & Saberi, Meead & Vu, Hai L. & Garoni, Timothy M. & Ramezani, Mohsen, 2020. "H∞ robust perimeter flow control in urban networks with partial information feedback," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 47-73.
    18. Niu, Xiao-Jing & Zhao, Xiao-Mei & Xie, Dong-Fan & Liu, Feng & Bi, Jun & Lu, Chaoru, 2022. "Impact of large-scale activities on macroscopic fundamental diagram: Field data analysis and modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 241-268.
    19. Ding, Heng & Qian, Yu & Zheng, Xiaoyan & Bai, Haijian & Wang, Shiguang & Zhou, Jingwen, 2022. "Dynamic parking charge–perimeter control coupled method for a congested road network based on the aggregation degree characteristics of parking generation distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    20. Liu, Wei & Szeto, Wai Yuen, 2020. "Learning and managing stochastic network traffic dynamics with an aggregate traffic representation," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 19-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437123010427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.