IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5572200.html
   My bibliography  Save this article

Optimization Algorithm Design for the Taxi-Sharing Problem and Application

Author

Listed:
  • Yongjie Wang
  • Maolin Li

Abstract

With the development of mobility techniques, the transportation systems become smarter, pursuing higher goals, such as convenience for passengers and low cost. In this work, we investigate the taxi-sharing system, which is a promising system recently. The passengers can share the same taxis to different destinations to save cost. Considering the property of taxis’ routes, the corresponding model is established and our aim is to design the trip for each taxi to reduce the total number of taxi trips in the whole system if one taxi can be shared by several passengers. Compared with the previous work, we do not have any constraint about the taxi stations. The taxi trips have more flexibility in reality. We analyze this problem and prove it is NP-Complete. There are two proposed algorithms to solve this problem, one is a heuristic algorithm and the other is an approximate algorithm. In the experiment, two real-world taxi data sets are tested, and our algorithm shows the superiority of our taxi-sharing system. Using the taxi-sharing system, the number of trips can be reduced by about .

Suggested Citation

  • Yongjie Wang & Maolin Li, 2021. "Optimization Algorithm Design for the Taxi-Sharing Problem and Application," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, August.
  • Handle: RePEc:hin:jnlmpe:5572200
    DOI: 10.1155/2021/5572200
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5572200.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5572200.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5572200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Zhong-Wen & Xu, Yuan-Hao & Chen, Jie & Hu, Mao-Bin, 2023. "Investigation of traffic-driven epidemic spreading by taxi trip data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Stumpe, Miriam & Dieter, Peter & Schryen, Guido & Müller, Oliver & Beverungen, Daniel, 2024. "Designing taxi ridesharing systems with shared pick-up and drop-off locations: Insights from a computational study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5572200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.