IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v93y2016icp175-181.html
   My bibliography  Save this article

Competing spreading processes and immunization in multiplex networks

Author

Listed:
  • Gao, Bo
  • Deng, Zhenghong
  • Zhao, Dawei

Abstract

Epidemic spreading on physical contact network will naturally introduce the human awareness information diffusion on virtual contact network, and the awareness diffusion will in turn depress the epidemic spreading, thus forming the competing spreading processes of epidemic and awareness in a multiplex networks. In this paper, we study the competing dynamics of epidemic and awareness, both of which follow the SIR process, in a two-layer networks based on microscopic Markov chain approach and numerical simulations. We find that strong capacities of awareness diffusion and self-protection of individuals could lead to a much higher epidemic threshold and a smaller outbreak size. However, the self-awareness of individuals has no obvious effect on the epidemic threshold and outbreak size. In addition, the immunization of the physical contact network under the interplay between of epidemic and awareness spreading is also investigated. The targeted immunization is found performs much better than random immunization, and the awareness diffusion could reduce the immunization threshold for both type of random and targeted immunization significantly.

Suggested Citation

  • Gao, Bo & Deng, Zhenghong & Zhao, Dawei, 2016. "Competing spreading processes and immunization in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 175-181.
  • Handle: RePEc:eee:chsofr:v:93:y:2016:i:c:p:175-181
    DOI: 10.1016/j.chaos.2016.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916303083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.10.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min, Byungjoon & Lee, Sangchul & Lee, Kyu-Min & Goh, K.-I., 2015. "Link overlap, viability, and mutual percolation in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 49-58.
    2. Dawei Zhao & Lianhai Wang & Shudong Li & Zhen Wang & Lin Wang & Bo Gao, 2014. "Immunization of Epidemics in Multiplex Networks," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-5, November.
    3. Rossi, Luca & Magnani, Matteo, 2015. "Towards effective visual analytics on multiplex and multilayer networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 68-76.
    4. Alessandro Di Stefano & Marialisa Scatà & Aurelio La Corte & Pietro Liò & Emanuele Catania & Ermanno Guardo & Salvatore Pagano, 2015. "Quantifying the Role of Homophily in Human Cooperation Using Multiplex Evolutionary Game Theory," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-21, October.
    5. Bo Gao & Haipeng Peng & Dawei Zhao & Wenguang Zhang & Yixian Yang, 2013. "Attractor Transformation by Impulsive Control in Boolean Control Network," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-5, July.
    6. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    7. Dawei Zhao & Haipeng Peng & Lixiang Li & Yixian Yang & Shudong Li, 2013. "An Efficient Patch Dissemination Strategy for Mobile Networks," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-13, September.
    8. Fan, Chong-jun & Jin, Yang & Huo, Liang-an & Liu, Chen & Yang, Yun-peng & Wang, Ya-qiong, 2016. "Effect of individual behavior on the interplay between awareness and disease spreading in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 523-530.
    9. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Yu-Xiao & Cao, Yan-Yan & Chen, Ting & Qiu, Xiao-Yan & Wang, Wei & Hou, Rui, 2018. "Crossover phenomena in growth pattern of social contagions with restricted contact," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 408-414.
    2. Zhao, Dawei & Wang, Lianhai & Xu, Shujiang & Liu, Guangqi & Han, Xiaohui & Li, Shudong, 2017. "Vital layer nodes of multiplex networks for immunization and attack," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 169-175.
    3. Baba, Isa Abdullahi & Kaymakamzade, Bilgen & Hincal, Evren, 2018. "Two-strain epidemic model with two vaccinations," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 342-348.
    4. Zhu, Peican & Wang, Xing & Zhi, Qiang & Ma, Jiezhong & Guo, Yangming, 2018. "Analysis of epidemic spreading process in multi-communities," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 231-237.
    5. Gao, Bo & Liu, Xuan & Lan, Zhong-Zhou & Hong, Jie & Zhang, Wenguang, 2021. "The evolution of cooperation with preferential selection in voluntary public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    6. Xie, Xiaoxiao & Huo, Liang'an, 2024. "Co-evolution dynamics between information and epidemic with asymmetric activity levels and community structure in time-varying multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2023. "A dynamics model of coupling transmission for multiple different knowledge in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    8. Gao, Bo & Deng, Zheng-hong & Zhao, Da-wei & Song, Qun, 2017. "State analysis of Boolean control networks with impulsive and uncertain disturbances," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 187-192.
    9. Parsamanesh, Mahmood & Erfanian, Majid, 2018. "Global dynamics of an epidemic model with standard incidence rate and vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 192-199.
    10. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    11. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Analysis of SIR epidemic model with information spreading of awareness," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 118-125.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    2. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    3. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    4. Prasanna Gai & Sujit Kapadia, 2011. "A Network Model of Super-Systemic Crises," Central Banking, Analysis, and Economic Policies Book Series, in: Rodrigo Alfaro (ed.),Financial Stability, Monetary Policy, and Central Banking, edition 1, volume 15, chapter 13, pages 411-432, Central Bank of Chile.
    5. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    6. Qingmin Hao & Jim Huangnan Shen & Chien-Chiang Lee, 2023. "Risk contagion of bank-firm loan network: evidence from China," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 13(2), pages 341-361, June.
    7. Kashyap, G. & Ambika, G., 2019. "Link deletion in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 631-643.
    8. Gordana Apic & Matthew J Betts & Robert B Russell, 2011. "Content Disputes in Wikipedia Reflect Geopolitical Instability," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-5, June.
    9. Ying Duan & Xiuwen Fu & Wenfeng Li & Yu Zhang & Giancarlo Fortino, 2017. "Evolution of Scale-Free Wireless Sensor Networks with Feature of Small-World Networks," Complexity, Hindawi, vol. 2017, pages 1-15, July.
    10. Li, Xin-Feng & Lu, Zhe-Ming, 2016. "Optimizing the controllability of arbitrary networks with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 422-433.
    11. Sun, Peng Gang & Che, Wanping & Quan, Yining & Wang, Shuzhen & Miao, Qiguang, 2022. "Random networks are heterogeneous exhibiting a multi-scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    12. Milena Oehlers & Benjamin Fabian, 2021. "Graph Metrics for Network Robustness—A Survey," Mathematics, MDPI, vol. 9(8), pages 1-48, April.
    13. Bokwon Lee & Kyu-Min Lee & Jae-Suk Yang, 2019. "Network structure reveals patterns of legal complexity in human society: The case of the Constitutional legal network," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-15, January.
    14. Johan Rose Santos & Nur Diana Safitri & Maya Safira & Varun Varghese & Makoto Chikaraishi, 2021. "Road network vulnerability and city-level characteristics: A nationwide comparative analysis of Japanese cities," Environment and Planning B, , vol. 48(5), pages 1091-1107, June.
    15. Jianxi Gao & Xueming Liu & Daqing Li & Shlomo Havlin, 2015. "Recent Progress on the Resilience of Complex Networks," Energies, MDPI, vol. 8(10), pages 1-24, October.
    16. Modjtaba Ghorbani & Matthias Dehmer & Frank Emmert-Streib, 2020. "Properties of Entropy-Based Topological Measures of Fullerenes," Mathematics, MDPI, vol. 8(5), pages 1-23, May.
    17. Sara Meerow & Joshua P. Newell, 2015. "Resilience and Complexity: A Bibliometric Review and Prospects for Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 19(2), pages 236-251, April.
    18. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    19. August Hämmerli & Regula Gattiker & Reto Weyermann, 2006. "Conflict and Cooperation in an Actors' Network of Chechnya Based on Event Data," Journal of Conflict Resolution, Peace Science Society (International), vol. 50(2), pages 159-175, April.
    20. Yang, Bo & Zuo, Youcheng & Hu, Xiaoming & Cheng, Weizheng & Li, Nuohan & Liu, Qi, 2024. "Enhancing core–periphery robustness of networks against link-based attacks with imprecise information," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:93:y:2016:i:c:p:175-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.