IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v4y2010i1p74-82.html
   My bibliography  Save this article

Can epidemic models describe the diffusion of topics across disciplines?

Author

Listed:
  • Kiss, Istvan Z.
  • Broom, Mark
  • Craze, Paul G.
  • Rafols, Ismael

Abstract

This paper introduces a new approach to describe the spread of research topics across disciplines using epidemic models. The approach is based on applying individual-based models from mathematical epidemiology to the diffusion of a research topic over a contact network that represents knowledge flows over the map of science—as obtained from citations between ISI Subject Categories. Using research publications on the protein class kinesin as a case study, we report a better fit between model and empirical data when using the citation-based contact network. Incubation periods on the order of 4–15.5 years support the view that, whilst research topics may grow very quickly, they face difficulties to overcome disciplinary boundaries.

Suggested Citation

  • Kiss, Istvan Z. & Broom, Mark & Craze, Paul G. & Rafols, Ismael, 2010. "Can epidemic models describe the diffusion of topics across disciplines?," Journal of Informetrics, Elsevier, vol. 4(1), pages 74-82.
  • Handle: RePEc:eee:infome:v:4:y:2010:i:1:p:74-82
    DOI: 10.1016/j.joi.2009.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157709000716
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2009.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Etzkowitz, Henry & Leydesdorff, Loet, 2000. "The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university-industry-government relations," Research Policy, Elsevier, vol. 29(2), pages 109-123, February.
    2. Luís M. A. Bettencourt & David I. Kaiser & Jasleen Kaur & Carlos Castillo-Chávez & David E. Wojick, 2008. "Population modeling of the emergence and development of scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(3), pages 495-518, June.
    3. Chaomei Chen & Diana Hicks, 2004. "Tracing knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(2), pages 199-211, February.
    4. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    5. Bettencourt, Luís M.A. & Cintrón-Arias, Ariel & Kaiser, David I. & Castillo-Chávez, Carlos, 2006. "The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 513-536.
    6. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    7. Ismael Rafols & Loet Leydesdorff, 2009. "Content‐based and algorithmic classifications of journals: Perspectives on the dynamics of scientific communication and indexer effects," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(9), pages 1823-1835, September.
    8. Yoshiyuki Takeda & Shiho Mae & Yuya Kajikawa & Katsumori Matsushima, 2009. "Nanobiotechnology as an emerging research domain from nanotechnology: A bibliometric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(1), pages 23-38, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia Gao & Jiancheng Guan, 2012. "Network model of knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 749-762, March.
    2. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2023. "A dynamics model of coupling transmission for multiple different knowledge in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    3. Wang, Haiying & Wang, Jun & Small, Michael, 2018. "Knowledge transmission model with differing initial transmission and retransmission process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 478-488.
    4. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    5. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    6. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analyzing knowledge transmission process considering free-riding behavior of knowledge acquisition: A waterborne disease approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    7. Maryam Zamani & Hassan El-Hajj & Malte Vogl & Holger Kantz & Matteo Valleriani, 2023. "A mathematical model for the process of accumulation of scientific knowledge in the early modern period," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-10, December.
    8. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analysis knowledge transmission process in complex networks by considering internalization mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    9. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2022. "A dynamics model of two kinds of knowledge transmission on duplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    10. Song, Le & Ma, Yinghong, 2022. "Evaluating tacit knowledge diffusion with algebra matrix algorithm based social networks," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    11. Ismael Rafols & Alan Porter & Loet Leydesdorff, 2009. "Overlay Maps of Science: a New Tool for Research Policy," SPRU Working Paper Series 179, SPRU - Science Policy Research Unit, University of Sussex Business School.
    12. Xuan Liu & Shan Jiang & Hsinchun Chen & Catherine A. Larson & Mihail C. Roco, 2015. "Modeling knowledge diffusion in scientific innovation networks: an institutional comparison between China and US with illustration for nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1953-1984, December.
    13. Jiancheng Guan & Wenjia Zhu, 2014. "How knowledge diffuses across countries: a case study in the field of management," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 2129-2144, March.
    14. Si, Xia-Meng & Wang, Wen-Dong & Zhai, Chun-Qing & Ma, Yan, 2017. "A topic evolution model with sentiment and selective attention," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 480-491.
    15. Le Song & Guilong Zhu & Xiao Yin, 2024. "Evaluating the wisdom of scholar crowds from the perspective of knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5103-5139, September.
    16. Zhu, Hongmiao & Jin, Zhen, 2023. "A dynamics model of knowledge dissemination in a WeChat Group from perspective of duplex networks," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    17. Cao, Bin & Han, Shui-hua & Jin, Zhen, 2016. "Modeling of knowledge transmission by considering the level of forgetfulness in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 277-287.
    18. Li, Jingjing & Zhang, Yumei & Man, Jiayu & Zhou, Yun & Wu, Xiaojun, 2017. "SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 740-749.
    19. Leydesdorff, Loet & Rafols, Ismael, 2012. "Interactive overlays: A new method for generating global journal maps from Web-of-Science data," Journal of Informetrics, Elsevier, vol. 6(2), pages 318-332.
    20. Bonaccorsi, Andrea & Vargas, Juan, 2010. "Proliferation dynamics in new sciences," Research Policy, Elsevier, vol. 39(8), pages 1034-1050, October.
    21. Zhu, He & Ma, Jing, 2018. "Knowledge diffusion in complex networks by considering time-varying information channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 225-235.
    22. Si, Xia-Meng & Wang, Wen-Dong & Ma, Yan, 2016. "Role of propagation thresholds in sentiment-based model of opinion evolution with information diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 549-559.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismael Rafols & Alan Porter & Loet Leydesdorff, 2009. "Overlay Maps of Science: a New Tool for Research Policy," SPRU Working Paper Series 179, SPRU - Science Policy Research Unit, University of Sussex Business School.
    2. John McLevey & Alexander V. Graham & Reid McIlroy-Young & Pierson Browne & Kathryn S. Plaisance, 2018. "Interdisciplinarity and insularity in the diffusion of knowledge: an analysis of disciplinary boundaries between philosophy of science and the sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 331-349, October.
    3. Jiancheng Guan & Wenjia Zhu, 2014. "How knowledge diffuses across countries: a case study in the field of management," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 2129-2144, March.
    4. Wolfram, Dietmar & Zhao, Yuehua, 2014. "A comparison of journal similarity across six disciplines using citing discipline analysis," Journal of Informetrics, Elsevier, vol. 8(4), pages 840-853.
    5. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    6. Yan, Erjia & Ding, Ying & Cronin, Blaise & Leydesdorff, Loet, 2013. "A bird's-eye view of scientific trading: Dependency relations among fields of science," Journal of Informetrics, Elsevier, vol. 7(2), pages 249-264.
    7. Loet Leydesdorff & Lutz Bornmann, 2012. "Mapping (USPTO) patent data using overlays to Google Maps," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(7), pages 1442-1458, July.
    8. Silva, Filipi N. & Amancio, Diego R. & Bardosova, Maria & Costa, Luciano da F. & Oliveira, Osvaldo N., 2016. "Using network science and text analytics to produce surveys in a scientific topic," Journal of Informetrics, Elsevier, vol. 10(2), pages 487-502.
    9. Opthof, Tobias & Leydesdorff, Loet, 2010. "Caveats for the journal and field normalizations in the CWTS (“Leiden”) evaluations of research performance," Journal of Informetrics, Elsevier, vol. 4(3), pages 423-430.
    10. Stephen Carley & Alan L. Porter, 2012. "A forward diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 407-427, February.
    11. Balland, Pierre-Alexandre & Boschma, Ron, 2022. "Do scientific capabilities in specific domains matter for technological diversification in European regions?," Research Policy, Elsevier, vol. 51(10).
    12. Xie, Yundong & Wu, Qiang & Zhang, Peng & Li, Xingchen, 2020. "Information Science and Library Science (IS-LS) journal subject categorisation and comparison based on editorship information," Journal of Informetrics, Elsevier, vol. 14(4).
    13. Xia Gao & Jiancheng Guan, 2012. "Network model of knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 749-762, March.
    14. Bettencourt, Luís M.A. & Kaiser, David I. & Kaur, Jasleen, 2009. "Scientific discovery and topological transitions in collaboration networks," Journal of Informetrics, Elsevier, vol. 3(3), pages 210-221.
    15. Yue, Zenghui & Xu, Haiyun & Yuan, Guoting & Pang, Hongshen, 2019. "Modeling study of knowledge diffusion in scientific collaboration networks based on differential dynamics: A case study in graphene field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 375-391.
    16. Urdiales, Cristina & Guzmán, Eduardo, 2024. "An automatic and association-based procedure for hierarchical publication subject categorization," Journal of Informetrics, Elsevier, vol. 18(1).
    17. Leydesdorff, Loet & Rafols, Ismael, 2012. "Interactive overlays: A new method for generating global journal maps from Web-of-Science data," Journal of Informetrics, Elsevier, vol. 6(2), pages 318-332.
    18. Cassidy R. Sugimoto, 2011. "Looking across communicative genres: a call for inclusive indicators of interdisciplinarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 449-461, February.
    19. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    20. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:4:y:2010:i:1:p:74-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.