IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v609y2023ics0378437122008834.html
   My bibliography  Save this article

Simulation of energy-efficient operation for metro trains: A discrete event-driven method based on multi-agent theory

Author

Listed:
  • Yang, Xingxing
  • Li, Yang
  • Guo, Xin
  • Ding, Meiling
  • Yang, Jingxuan

Abstract

Along with the rapid development of urban rail transit systems, the increase in operating mileage is the direct result of the enormous energy consumption. Among them, the energy consumption of train traction operation is close to half of the total energy consumption, leading to a gradual increase in operation cost. Based on the discrete event-driven method of multi-agent simulation, this paper simulates the process of the train operation with four function modules. Ingenuity, trains with onboard equipment would store braking regenerative energy and then transmit regenerative energy to other traction trains in the same power supply section. Moreover, the evaluation method of renewable energy utilization efficiency also is proposed with different operation schemes to calculate train operation energy consumption. Further, an adaptive large neighborhood search algorithm is designed to improve computational efficiency for real-time applications. Lastly, the operation of the Beijing Metro Yizhuang line is utilized as a case study to evaluate the simulation model and algorithm. The results show that the simulation method can reasonably simulate the process of train operation according to the actual situation. By optimizing the train operation time and dwell time of different onboard power storage equipment scenarios, the traction energy consumption can be reduced by 3.95% and up to 17.71%, which has a remarkable effect on energy saving.

Suggested Citation

  • Yang, Xingxing & Li, Yang & Guo, Xin & Ding, Meiling & Yang, Jingxuan, 2023. "Simulation of energy-efficient operation for metro trains: A discrete event-driven method based on multi-agent theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
  • Handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122008834
    DOI: 10.1016/j.physa.2022.128325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122008834
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, San-Tong & Chen, Yi-Chuan, 2011. "Simulation for influence of train failure on railway traffic flow and research on train operation adjusting strategies using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3710-3718.
    2. Song, Xiao & Zhang, Zenghui & Peng, Gongzhuang & Shi, Guoqiang, 2017. "Effect of authority figures for pedestrian evacuation at metro stations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 599-612.
    3. Kopsidas, Athanasios & Kepaptsoglou, Konstantinos, 2022. "Identification of critical stations in a Metro System: A substitute complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. Li, Yang & Yang, Xin & Wu, Jianjun & Sun, Huijun & Guo, Xin & Zhou, Li, 2021. "Discrete-event simulations for metro train operation under emergencies: A multi-agent based model with parallel computing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    5. Zhou, Yuyang & Zheng, Shuyan & Hu, Zhonghui & Chen, Yanyan, 2022. "Metro station risk classification based on smart card data: A case study in Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    6. Xiaoming Xu & Lixing Yang & Ziyou Gao & Jiancheng Long, 2017. "Simulations for train traffic flow on single-track railways with speed limits and slopes," Journal of Simulation, Taylor & Francis Journals, vol. 11(4), pages 346-356, November.
    7. Wang, Chao & Meng, Xin & Guo, Mingxue & Li, Hao & Hou, Zhiqiang, 2022. "An integrated energy-efficient and transfer-accessible model for the last train timetabling problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    8. Yang, Xin & Xue, Qiuchi & Ding, Meiling & Wu, Jianjun & Gao, Ziyou, 2021. "Short-term prediction of passenger volume for urban rail systems: A deep learning approach based on smart-card data," International Journal of Production Economics, Elsevier, vol. 231(C).
    9. Zhang, Lang & He, Deqiang & He, Yan & Liu, Bin & Chen, Yanjun & Shan, Sheng, 2022. "Real-time energy saving optimization method for urban rail transit train timetable under delay condition," Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yang & Yang, Xin & Wu, Jianjun & Sun, Huijun & Guo, Xin & Zhou, Li, 2021. "Discrete-event simulations for metro train operation under emergencies: A multi-agent based model with parallel computing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    2. Huang, Kang & Wu, Jianjun & Sun, Huijun & Yang, Xin & Gao, Ziyou & Feng, Xujie, 2022. "Timetable synchronization optimization in a subway–bus network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    3. Meng, Yangyang & Zhao, Xiaofei & Liu, Jianzhong & Qi, Qingjie & Zhou, Wei, 2023. "Data-driven complexity analysis of weighted Shenzhen Metro network based on urban massive mobility in the rush hours," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    4. Yangyang Meng & Xiaofei Zhao & Jianzhong Liu & Qingjie Qi, 2023. "Dynamic Influence Analysis of the Important Station Evolution on the Resilience of Complex Metro Network," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    5. Chen Zhang & Yichen Liang & Tian Tian & Peng Peng, 2024. "Sustainable Transportation: Exploring the Node Importance Evolution of Rail Transit Networks during Peak Hours," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    6. Wang, Wenhao & Wang, Yanhui & Wang, Guangxing & Li, Man & Jia, Limin, 2023. "Identification of the critical accident causative factors in the urban rail transit system by complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    7. Ma, Changxi & Zhang, Bowen & Li, Shukai & Lu, Youpeng, 2024. "Urban rail transit passenger flow prediction with ResCNN-GRU based on self-attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    8. Chengli Cong & Xuan Li & Shiwei Yang & Quan Zhang & Lili Lu & Yang Shi, 2022. "Impact Estimation of Unplanned Urban Rail Disruptions on Public Transport Passengers: A Multi-Agent Based Simulation Approach," IJERPH, MDPI, vol. 19(15), pages 1-25, July.
    9. Jian Li & Lu Zhang & Bu Liu & Ningning Shi & Liang Li & Haodong Yin, 2023. "Travel-Energy-Based Timetable Optimization in Urban Subway Systems," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    10. Junhong Hu & Mingshu Yang & Yunzhu Zhen, 2024. "A Review of Resilience Assessment and Recovery Strategies of Urban Rail Transit Networks," Sustainability, MDPI, vol. 16(15), pages 1-16, July.
    11. Arpit Shrivastava & Nishtha Rawat & Amit Agarwal, 2024. "Deep-learning-based model for prediction of crowding in a public transit system," Public Transport, Springer, vol. 16(2), pages 449-484, June.
    12. Ștefan Ionescu & Ionuț Nica & Nora Chiriță, 2021. "Cybernetics Approach Using Agent-Based Modeling in the Process of Evacuating Educational Institutions in Case of Disasters," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    13. Iliopoulou, Christina & Makridis, Michail A., 2023. "Critical multi-link disruption identification for public transport networks: A multi-objective optimization framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    14. Zhang, Quan & Li, Xuan & Yan, Tao & Lu, Lili & Shi, Yang, 2022. "Last train timetabling optimization for minimizing passenger transfer failures in urban rail transit networks: A time period based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    15. Chengguang Liu & Jiaqi Zhang & Xixi Luo & Yulin Yang & Chao Hu, 2023. "Railway Freight Demand Forecasting Based on Multiple Factors: Grey Relational Analysis and Deep Autoencoder Neural Networks," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    16. Andrzej Chudzikiewicz & Ignacy Góra & Juraj Gerlici & Seweryn Koziak & Andrzej Krzyszkowski & Anna Stelmach, 2024. "Model of Electric Locomotive Simulator Cabin Excitations," Energies, MDPI, vol. 17(12), pages 1-18, June.
    17. Emilia Koper & Andrzej Kochan, 2020. "Testing the Smooth Driving of a Train Using a Neural Network," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    18. Hongxia Feng & Yaotong Chen & Jinyi Wu & Zhenqian Zhao & Yuanqing Wang & Zhuoting Wang, 2023. "Urban Rail Transit Station Type Identification Based on “Passenger Flow—Land Use—Job-Housing”," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    19. Ruxun Xu & Jianjun Meng & Decang Li & Xiaoqiang Chen, 2023. "Energy-Efficient Optimization Method of Urban Rail Train Based on Following Consistency," Energies, MDPI, vol. 16(4), pages 1-15, February.
    20. Yang, Hongtai & Ping, An & Wei, Hongmin & Zhai, Guocong, 2023. "Unique in the metro system: The likelihood to re-identify a metro user with limited trajectory points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122008834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.