IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v596y2022ics0378437122001479.html
   My bibliography  Save this article

Identification of critical stations in a Metro System: A substitute complex network analysis

Author

Listed:
  • Kopsidas, Athanasios
  • Kepaptsoglou, Konstantinos

Abstract

Metro systems are critical public transport elements in several metropolitan areas around the world. Unexpected disruptions may undermine service provision of metro systems, and thus addressing their negative impacts is of primary importance. A first step towards developing mitigation measures involves the identification of those critical metro stations, whose operation must be preserved. Complex Network Theory (CNT) provides valuable methodological tools for this purpose, as a topological analysis based on centrality measures combined with real-world spatiotemporal data can be used for critical station identification. The objective of this paper is to develop a measure for evaluating metro station criticality based on CNT, considering substitute services during a disruption. A substitute network is defined as the network consisting of the metro stations as nodes and all alternative public transport routes potentially serving those stations outside the metro system, as edges. The form of the substitute network depends on a pre-selected service level. Two graphs are constructed, the metro and the substitute, using an L-space and a P-space representation, respectively. A combination of centrality measures of both networks is utilized for evaluating the stations’ criticality. The methodology proposed is applied to a real-world metro system, that of Athens, Greece. A sensitivity analysis is conducted suggesting that the proposed measures manage to capture the tradeoff between centrality and availability of alternatives, considering a station’s topological criticality. On top of that, the criticality measure seems to be robust against changes at service levels, but sensitive enough, so that it can be adaptable to each operator’s needs. The methodology proposed can be utilized for identifying critical metro stations a priori and thus achieving a more efficient planning, considering metro disruptions.

Suggested Citation

  • Kopsidas, Athanasios & Kepaptsoglou, Konstantinos, 2022. "Identification of critical stations in a Metro System: A substitute complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
  • Handle: RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001479
    DOI: 10.1016/j.physa.2022.127123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122001479
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    2. Jiangang Shi & Shiping Wen & Xianbo Zhao & Guangdong Wu, 2019. "Sustainable Development of Urban Rail Transit Networks: A Vulnerability Perspective," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    3. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    4. Elisa Frutos Bernal & Angel Martín del Rey, 2019. "Study of the Structural and Robustness Characteristics of Madrid Metro Network," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    5. Jungyeol Hong & Reuben Tamakloe & Soobeom Lee & Dongjoo Park, 2019. "Exploring the Topological Characteristics of Complex Public Transportation Networks: Focus on Variations in Both Single and Integrated Systems in the Seoul Metropolitan Area," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    6. Lin, Pengfei & Weng, Jiancheng & Fu, Yu & Alivanistos, Dimitrios & Yin, Baocai, 2020. "Study on the topology and dynamics of the rail transit network based on automatic fare collection data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Anastasia Pnevmatikou & Matthew Karlaftis & Konstantinos Kepaptsoglou, 2015. "Metro service disruptions: how do people choose to travel?," Transportation, Springer, vol. 42(6), pages 933-949, November.
    8. Daniel (Jian) Sun & Yuhan Zhao & Qing-Chang Lu, 2015. "Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    9. Wang, Xiangrong & Koç, Yakup & Derrible, Sybil & Ahmad, Sk Nasir & Pino, Willem J.A. & Kooij, Robert E., 2017. "Multi-criteria robustness analysis of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 19-31.
    10. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.
    11. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Exploring node importance evolution of weighted complex networks in urban rail transit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    12. Dimitrov, Stavri Dimitri & Ceder, Avishai (Avi), 2016. "A method of examining the structure and topological properties of public-transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 373-387.
    13. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
    14. Xu, Xinping & Hu, Junhui & Liu, Feng & Liu, Lianshou, 2007. "Scaling and correlations in three bus-transport networks of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 441-448.
    15. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    16. Noguchi, Hiroki & Fuse, Masaaki, 2020. "Rethinking critical node problem for railway networks from the perspective of turn-back operation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    17. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    18. Cats, Oded & Krishnakumari, Panchamy, 2020. "Metropolitan rail network robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    19. Du, Zhouyang & Tang, Jinjun & Qi, Yong & Wang, Yiwei & Han, Chunyang & Yang, Yifan, 2020. "Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    20. Wu, Xingtang & Dong, Hairong & Tse, Chi Kong & Ho, Ivan W.H. & Lau, Francis C.M., 2018. "Analysis of metro network performance from a complex network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 553-563.
    21. Jingyi Lin & Yifang Ban, 2013. "Complex Network Topology of Transportation Systems," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 658-685, November.
    22. Guo-Ling Jia & Rong-Guo Ma & Zhi-Hua Hu, 2019. "Urban Transit Network Properties Evaluation and Optimization Based on Complex Network Theory," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    23. Jing, Weiwei & Xu, Xiangdong & Pu, Yichao, 2020. "Route redundancy-based approach to identify the critical stations in metro networks: A mean-excess probability measure," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    24. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    25. Zhu, Weihua & Liu, Kai & Wang, Ming & Yan, Xiaoyong, 2018. "Enhancing robustness of metro networks using strategic defense," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1081-1091.
    26. Wang, Li-Na & Wang, Kai & Shen, Jiang-Long, 2020. "Weighted complex networks in urban public transportation: Modeling and testing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    27. Tang, Jinjun & Li, Zhitao & Gao, Fan & Zong, Fang, 2021. "Identifying critical metro stations in multiplex network based on D–S evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    28. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Comparison analysis on complex topological network models of urban rail transit: A case study of Shenzhen Metro in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    29. Sun, Lishan & Huang, Yuchen & Chen, Yanyan & Yao, Liya, 2018. "Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 108(C), pages 12-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Kangzheng & Xie, Yun & Peng, Huihao & Li, Weibo, 2024. "Study on dynamic evolution characteristics of Wuhan metro network based on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
    2. Yang, Xingxing & Li, Yang & Guo, Xin & Ding, Meiling & Yang, Jingxuan, 2023. "Simulation of energy-efficient operation for metro trains: A discrete event-driven method based on multi-agent theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Iliopoulou, Christina & Makridis, Michail A., 2023. "Critical multi-link disruption identification for public transport networks: A multi-objective optimization framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    4. Yangyang Meng & Xiaofei Zhao & Jianzhong Liu & Qingjie Qi, 2023. "Dynamic Influence Analysis of the Important Station Evolution on the Resilience of Complex Metro Network," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    5. Meng, Yangyang & Zhao, Xiaofei & Liu, Jianzhong & Qi, Qingjie & Zhou, Wei, 2023. "Data-driven complexity analysis of weighted Shenzhen Metro network based on urban massive mobility in the rush hours," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    6. Chen Zhang & Yichen Liang & Tian Tian & Peng Peng, 2024. "Sustainable Transportation: Exploring the Node Importance Evolution of Rail Transit Networks during Peak Hours," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    7. Yangyang Meng & Qingjie Qi & Jianzhong Liu & Wei Zhou, 2022. "Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    8. Liu, Xiaolei & Lei, Zengxiang & Duan, Zhengyu, 2024. "Assessing metro network vulnerability with turn-back operations: A Monte Carlo method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
    9. Abdelaty, Hatem & Mohamed, Moataz & Ezzeldin, Mohamed & El-Dakhakhni, Wael, 2022. "Temporal robustness assessment framework for city-scale bus transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    10. Wang, Wenhao & Wang, Yanhui & Wang, Guangxing & Li, Man & Jia, Limin, 2023. "Identification of the critical accident causative factors in the urban rail transit system by complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    11. Junhong Hu & Mingshu Yang & Yunzhu Zhen, 2024. "A Review of Resilience Assessment and Recovery Strategies of Urban Rail Transit Networks," Sustainability, MDPI, vol. 16(15), pages 1-16, July.
    12. Zhang, Hui & Cui, Yu, 2024. "Understanding multimodal travel mobilities of dockless bike-sharing and metro: A multilayer network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
    13. Qingjie Qi & Yangyang Meng & Xiaofei Zhao & Jianzhong Liu, 2022. "Resilience Assessment of an Urban Metro Complex Network: A Case Study of the Zhengzhou Metro," Sustainability, MDPI, vol. 14(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangyang Meng & Qingjie Qi & Jianzhong Liu & Wei Zhou, 2022. "Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    2. Qingjie Qi & Yangyang Meng & Xiaofei Zhao & Jianzhong Liu, 2022. "Resilience Assessment of an Urban Metro Complex Network: A Case Study of the Zhengzhou Metro," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    3. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    4. Xu, Chen & Xu, Xueguo, 2024. "A two-stage resilience promotion approach for urban rail transit networks based on topology enhancement and recovery optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    5. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    6. Chan, Ho-Yin & Chen, Anthony & Li, Guoyuan & Xu, Xiangdong & Lam, William, 2021. "Evaluating the value of new metro lines using route diversity measures: The case of Hong Kong's Mass Transit Railway system," Journal of Transport Geography, Elsevier, vol. 91(C).
    7. Liu, Xiaolei & Lei, Zengxiang & Duan, Zhengyu, 2024. "Assessing metro network vulnerability with turn-back operations: A Monte Carlo method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
    8. Jing, Weiwei & Xu, Xiangdong & Pu, Yichao, 2020. "Route redundancy-based approach to identify the critical stations in metro networks: A mean-excess probability measure," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Ma, Zhiao & Yang, Xin & Wu, Jianjun & Chen, Anthony & Wei, Yun & Gao, Ziyou, 2022. "Measuring the resilience of an urban rail transit network: A multi-dimensional evaluation model," Transport Policy, Elsevier, vol. 129(C), pages 38-50.
    10. Zhang, Jianhua & Zhou, Yu & Wang, Shuliang & Min, Qinjie, 2024. "Critical station identification and robustness analysis of urban rail transit networks based on comprehensive vote-rank algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    11. Zhang, Lin & Lu, Jian & Fu, Bai-bai & Li, Shu-bin, 2019. "A cascading failures model of weighted bus transit route network under route failure perspective considering link prediction effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1315-1330.
    12. Hu, Xinlei & Huang, Jie & Shi, Feng, 2022. "A robustness assessment with passenger flow data of high-speed rail network in China," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    13. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    14. Jianhua Zhang & Ziqi Wang & Shuliang Wang & Shengyang Luan & Wenchao Shao, 2020. "Vulnerability Assessments of Urban Rail Transit Networks Based on Redundant Recovery," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    15. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.
    16. Jia, Tao & Liu, Wenxuan & Liu, Xintao, 2021. "A cross-city exploratory analysis of the robustness of bus transit networks using open-source data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    17. Elisa Frutos Bernal & Angel Martín del Rey, 2019. "Study of the Structural and Robustness Characteristics of Madrid Metro Network," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    18. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    19. Abdelaty, Hatem & Mohamed, Moataz & Ezzeldin, Mohamed & El-Dakhakhni, Wael, 2022. "Temporal robustness assessment framework for city-scale bus transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    20. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.