IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v414y2014icp263-273.html
   My bibliography  Save this article

Structural differences between open and direct communication in an online community

Author

Listed:
  • Karimi, Fariba
  • Ramenzoni, Verónica C.
  • Holme, Petter

Abstract

Most research of online communication focuses on modes of communication that are either open (like forums, bulletin boards, Twitter, etc.) or direct (like e-mails). In this work, we study a dataset that has both types of communication channels. We relate our findings to theories of social organization and human dynamics. The data comprises 36,492 users of a movie discussion community. Our results show that there are differences in the way users communicate in the two channels that are reflected in the shape of degree- and interevent time distributions. The open communication that is designed to facilitate conversations with any member shows a broader degree distribution and more of the triangles in the network are primarily formed in this mode of communication. The direct channel is presumably preferred by closer communication and the response time in dialogs is shorter. On a more coarse-grained level, there are common patterns in the two networks. The differences and overlaps between communication networks, thus, provide a unique window into how social and structural aspects of communication establish and evolve.

Suggested Citation

  • Karimi, Fariba & Ramenzoni, Verónica C. & Holme, Petter, 2014. "Structural differences between open and direct communication in an online community," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 263-273.
  • Handle: RePEc:eee:phsmap:v:414:y:2014:i:c:p:263-273
    DOI: 10.1016/j.physa.2014.07.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114006062
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.07.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johansen, Anders, 2004. "Probing human response times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 286-291.
    2. Traud, Amanda L. & Mucha, Peter J. & Porter, Mason A., 2012. "Social structure of Facebook networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4165-4180.
    3. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    4. Francesco Calabrese & Zbigniew Smoreda & Vincent D Blondel & Carlo Ratti, 2011. "Interplay between Telecommunications and Face-to-Face Interactions: A Study Using Mobile Phone Data," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-6, July.
    5. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    6. Hidalgo, Cesar A. & Rodriguez-Sickert, C., 2008. "The dynamics of a mobile phone network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 3017-3024.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bing & Zeng, Hongjuan & Han, Yuexing, 2022. "Dynamical immunization based on random-walk in time-varying networks," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Gerardo Iñiguez & Sara Heydari & János Kertész & Jari Saramäki, 2023. "Universal patterns in egocentric communication networks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Shen, Yi & Ren, Gang & Liu, Yang, 2016. "Finding the biased-shortest path with minimal congestion in networks via linear-prediction of queue length," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 229-240.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Ji Hwan & Chang, Woojin & Song, Jae Wook, 2020. "Link prediction in the Granger causality network of the global currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    2. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    3. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    4. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    5. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    6. Shenshen Bai & Longjie Li & Jianjun Cheng & Shijin Xu & Xiaoyun Chen, 2018. "Predicting Missing Links Based on a New Triangle Structure," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    7. Xia, Yongxiang & Pang, Wenbo & Zhang, Xuejun, 2021. "Mining relationships between performance of link prediction algorithms and network structure," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    8. Qiaoran Yang & Zhiliang Dong & Yichi Zhang & Man Li & Ziyi Liang & Chao Ding, 2021. "Who Will Establish New Trade Relations? Looking for Potential Relationship in International Nickel Trade," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    9. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    11. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    12. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    13. Moradabadi, Behnaz & Meybodi, Mohammad Reza, 2016. "Link prediction based on temporal similarity metrics using continuous action set learning automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 361-373.
    14. Yichi Zhang & Zhiliang Dong & Sen Liu & Peixiang Jiang & Cuizhi Zhang & Chao Ding, 2021. "Forecast of International Trade of Lithium Carbonate Products in Importing Countries and Small-Scale Exporting Countries," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    15. Peng Liu & Liang Gui & Huirong Wang & Muhammad Riaz, 2022. "A Two-Stage Deep-Learning Model for Link Prediction Based on Network Structure and Node Attributes," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    16. Liu, Jin-Hu & Zhu, Yu-Xiao & Zhou, Tao, 2016. "Improving personalized link prediction by hybrid diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 199-207.
    17. Feng, Sida & Li, Huajiao & Qi, Yabin & Guan, Qing & Wen, Shaobo, 2017. "Who will build new trade relations? Finding potential relations in international liquefied natural gas trade," Energy, Elsevier, vol. 141(C), pages 1226-1238.
    18. Chengjun Zhang & Jin Liu & Yanzhen Qu & Tianqi Han & Xujun Ge & An Zeng, 2018. "Enhancing the robustness of recommender systems against spammers," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-14, November.
    19. Zhang, Xue & Wang, Xiaojie & Zhao, Chengli & Yi, Dongyun & Xie, Zheng, 2014. "Degree-corrected stochastic block models and reliability in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 553-559.
    20. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:414:y:2014:i:c:p:263-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.