IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v495y2018icp126-136.html
   My bibliography  Save this article

Community detection using preference networks

Author

Listed:
  • Tasgin, Mursel
  • Bingol, Haluk O.

Abstract

Community detection is the task of identifying clusters or groups of nodes in a network where nodes within the same group are more connected with each other than with nodes in different groups. It has practical uses in identifying similar functions or roles of nodes in many biological, social and computer networks. With the availability of very large networks in recent years, performance and scalability of community detection algorithms become crucial, i.e. if time complexity of an algorithm is high, it cannot run on large networks. In this paper, we propose a new community detection algorithm, which has a local approach and is able to run on large networks. It has a simple and effective method; given a network, algorithm constructs a preference network of nodes where each node has a single outgoing edge showing its preferred node to be in the same community with. In such a preference network, each connected component is a community. Selection of the preferred node is performed using similarity based metrics of nodes. We use two alternatives for this purpose which can be calculated in 1-neighborhood of nodes, i.e. number of common neighbors of selector node and its neighbors and, the spread capability of neighbors around the selector node which is calculated by the gossip algorithm of Lind et.al. Our algorithm is tested on both computer generated LFR networks and real-life networks with ground-truth community structure. It can identify communities accurately in a fast way. It is local, scalable and suitable for distributed execution on large networks.

Suggested Citation

  • Tasgin, Mursel & Bingol, Haluk O., 2018. "Community detection using preference networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 126-136.
  • Handle: RePEc:eee:phsmap:v:495:y:2018:i:c:p:126-136
    DOI: 10.1016/j.physa.2017.12.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117313031
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.12.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tasgin, Mursel & Bingol, Haluk O., 2019. "Community detection using boundary nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 315-324.
    2. Maihami, Vafa & Yaghmaee, Farzin, 2018. "Automatic image annotation using community detection in neighbor images," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 123-132.
    3. Wu, Liuyi & Dong, Lijun & Wang, Yi & Zhang, Feng & Lee, Victor E. & Kang, Xiaojun & Liang, Qingzhong, 2018. "Uniform-scale assessment of role minimization in bipartite networks and its application to access control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 381-397.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jianshe & Zhang, Long & Li, Yong & Jiao, Yang, 2016. "Partition signed social networks via clustering dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 568-582.
    2. Nan, Dong-Yang & Yu, Wei & Liu, Xiao & Zhang, Yun-Peng & Dai, Wei-Di, 2018. "A framework of community detection based on individual labels in attribute networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 523-536.
    3. Wang, Tao & Wang, Hongjue & Wang, Xiaoxia, 2015. "A novel cosine distance for detecting communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 21-35.
    4. Wang, Tao & Chen, Shanshan & Wang, Xiaoxia & Wang, Jinfang, 2020. "Label propagation algorithm based on node importance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    5. Wang, Benyu & Gu, Yijun & Zheng, Diwen, 2022. "Community detection in error-prone environments based on particle cooperation and competition with distance dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    6. Chen, Xiangtao & Li, Juan, 2019. "Community detection in complex networks using edge-deleting with restrictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 181-194.
    7. Yang, Jin-Xuan & Zhang, Xiao-Dong, 2017. "Finding overlapping communities using seed set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 96-106.
    8. Tasgin, Mursel & Bingol, Haluk O., 2019. "Community detection using boundary nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 315-324.
    9. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    10. Zhu, Jiajing & Liu, Yongguo & Zhang, Yun & Liu, Xiaofeng & Xiao, Yonghua & Wang, Shidong & Wu, Xindong, 2017. "Exploring anti-community structure in networks with application to incompatibility of traditional Chinese medicine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 31-43.
    11. Wang, Tao & Yin, Liyan & Wang, Xiaoxia, 2018. "A community detection method based on local similarity and degree clustering information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1344-1354.
    12. Chen, Naiyue & Liu, Yun & Chen, Haiqiang & Cheng, Junjun, 2017. "Detecting communities in social networks using label propagation with information entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 788-798.
    13. Zhang, Xiaolei & Ren, Yibin & Huang, Baoxiang & Han, Yong, 2018. "Analysis of time-varying characteristics of bus weighted complex network in Qingdao based on boarding passenger volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 376-394.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:495:y:2018:i:c:p:126-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.