TRELM-DROP: An impavement non-iterative algorithm for traffic flow forecast
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2023.129337
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liu, Qingchao & Liu, Tao & Cai, Yingfeng & Xiong, Xiaoxia & Jiang, Haobin & Wang, Hai & Hu, Ziniu, 2021. "Explanatory prediction of traffic congestion propagation mode: A self-attention based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
- Chikaraishi, Makoto & Garg, Prateek & Varghese, Varun & Yoshizoe, Kazuki & Urata, Junji & Shiomi, Yasuhiro & Watanabe, Ryuki, 2020. "On the possibility of short-term traffic prediction during disaster with machine learning approaches: An exploratory analysis," Transport Policy, Elsevier, vol. 98(C), pages 91-104.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiaoqing Dai & Han Qiu & Lijun Sun, 2021. "A Data-Efficient Approach for Evacuation Demand Generation and Dissipation Prediction in Urban Rail Transit System," Sustainability, MDPI, vol. 13(17), pages 1-15, August.
- Ekinci, Esra & Mangla, Sachin Kumar & Kazancoglu, Yigit & Sarma, P.R.S. & Sezer, Muruvvet Deniz & Ozbiltekin-Pala, Melisa, 2022. "Resilience and complexity measurement for energy efficient global supply chains in disruptive events," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
- Wu, Jiaxin & Zhou, Xubing & Peng, Yi & Zhao, Xiaojun, 2022. "Recurrence analysis of urban traffic congestion index on multi-scale," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
- Johan Rose Santos & Nur Diana Safitri & Maya Safira & Varun Varghese & Makoto Chikaraishi, 2021. "Road network vulnerability and city-level characteristics: A nationwide comparative analysis of Japanese cities," Environment and Planning B, , vol. 48(5), pages 1091-1107, June.
- E. Mary Jasmine & A. Milton, 2022. "The role of hyperparameters in predicting rainfall using n-hidden-layered networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 489-505, March.
- Chen, Zhichao & Zheng, Changjiang & Tao, Tongtong & Wang, Yanyan, 2024. "Reliability analysis of urban road traffic network under targeted attack strategies considering traffic congestion diffusion," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Toan, Trinh Dinh & Wong, Yiik Diew & Lam, Soi Hoi & Meng, Meng, 2022. "Developing a fuzzy-based decision-making procedure for traffic control in expressway congestion management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
- Xing, Zhuoqun & Pan, Yiqun & Yang, Yiting & Yuan, Xiaolei & Liang, Yumin & Huang, Zhizhong, 2024. "Transfer learning integrating similarity analysis for short-term and long-term building energy consumption prediction," Applied Energy, Elsevier, vol. 365(C).
- Shao, Zhen & Yang, Yudie & Zheng, Qingru & Zhou, Kaile & Liu, Chen & Yang, Shanlin, 2022. "A pattern classification methodology for interval forecasts of short-term electricity prices based on hybrid deep neural networks: A comparative analysis," Applied Energy, Elsevier, vol. 327(C).
- Wang, Xin & Liu, Xiang & Bai, Yun, 2024. "Prediction of the temperature of diesel engine oil in railroad locomotives using compressed information-based data fusion method with attention-enhanced CNN-LSTM," Applied Energy, Elsevier, vol. 367(C).
- Wang, Ke & Ma, Changxi & Qiao, Yihuan & Lu, Xijin & Hao, Weining & Dong, Sheng, 2021. "A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
More about this item
Keywords
Traffic flow prediction; Extreme learning machine; Dropout; Tent chaos;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:633:y:2024:i:c:s0378437123008920. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.