IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v596y2022ics0378437122001959.html
   My bibliography  Save this article

Development and validation of a driving simulator for traffic control using field data

Author

Listed:
  • Toan, Trinh Dinh
  • Lam, Soi Hoi
  • Wong, Yiik Diew
  • Meng, Meng

Abstract

This paper presents the development and validation of a driving simulator for ramp traffic control on expressways using a traffic simulator and control (TSC). The TSC consists of two main components: car-following model (CFM), and traffic controller (TC). The CFM simulates the car-following behavior and delivers aggregated traffic parameters to the TC to derive control actions. The CFM and TC are harmonized and integrated in a close-loop control manner, where the effects of the control by the TC are fed-back as inputs for the CFM in real-time applications. Although the following behavior of individual vehicles is simulated, the aggregated outputs such as average speed and flow rate from the model are the parameters of interest. For simplicity in the model development and validation and to capture lane-changing effects, the traffic in the multi-lane expressway where the data were obtained was equivalently represented as a single-lane system. The validation of the CFM was performed at macroscopic level where aggregated outputs from the model were compared to observed data in a segment of the Pan Island Expressway of Singapore under various traffic conditions. The result shows that the simulated speed is not significantly different from the actual speed at 5% significance level, and the aggregated flow rate discrepancies fall in a small range, from 2.21% to 3.15%. This shows that the TSC model is a reliable model for traffic simulation and control applications.

Suggested Citation

  • Toan, Trinh Dinh & Lam, Soi Hoi & Wong, Yiik Diew & Meng, Meng, 2022. "Development and validation of a driving simulator for traffic control using field data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
  • Handle: RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001959
    DOI: 10.1016/j.physa.2022.127201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122001959
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    2. Denos C. Gazis & Robert Herman & Renfrey B. Potts, 1959. "Car-Following Theory of Steady-State Traffic Flow," Operations Research, INFORMS, vol. 7(4), pages 499-505, August.
    3. An, Shuke & Xu, Liangjie & Qian, Lianghui & Chen, Guojun & Luo, Haoshun & Li, Fu, 2020. "Car-following model for autonomous vehicles and mixed traffic flow analysis based on discrete following interval," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    4. Li, Xiangchen & Luo, Xia & He, Mengchen & Chen, Siwei, 2018. "An improved car-following model considering the influence of space gap to the response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 536-545.
    5. Denos C. Gazis & Robert Herman & Richard W. Rothery, 1961. "Nonlinear Follow-the-Leader Models of Traffic Flow," Operations Research, INFORMS, vol. 9(4), pages 545-567, August.
    6. Toan, Trinh Dinh & Wong, Y.D., 2021. "Fuzzy logic-based methodology for quantification of traffic congestion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    7. Wang, Yibing & Papageorgiou, Markos & Messmer, Albert, 2008. "Real-time freeway traffic state estimation based on extended Kalman filter: Adaptive capabilities and real data testing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1340-1358, December.
    8. Yeung, Jian Sheng & Wong, Yiik Diew & Secadiningrat, Julius Raditya, 2015. "Lane-harmonised passenger car equivalents for heterogeneous expressway traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 361-370.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toan, Trinh Dinh & Wong, Yiik Diew & Lam, Soi Hoi & Meng, Meng, 2022. "Developing a fuzzy-based decision-making procedure for traffic control in expressway congestion management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    2. Ponnu, Balaji & Coifman, Benjamin, 2015. "Speed-spacing dependency on relative speed from the adjacent lane: New insights for car following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 74-90.
    3. Dayi Qu & Shaojie Wang & Haomin Liu & Yiming Meng, 2022. "A Car-Following Model Based on Trajectory Data for Connected and Automated Vehicles to Predict Trajectory of Human-Driven Vehicles," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    4. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    5. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    6. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    7. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    8. Jinhua Tan & Li Gong & Xuqian Qin, 2019. "Global Optimality under Internet of Vehicles: Strategy to Improve Traffic Safety and Reduce Energy Dissipation," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    9. Maiti, Nandan & Chilukuri, Bhargava Rama, 2023. "Does anisotropy hold in mixed traffic conditions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    10. Kun Zhang & Yu Xue & Hao-Jie Luo & Qiang Zhang & Yuan Tang & Bing-Ling Cen, 2023. "Cyber-attacks on the optimal velocity and its variation by bifurcation analyses," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-19, December.
    11. Tamra Heberling & Lisa Davis & Jakub Gedeon & Charles Morgan & Tomáš Gedeon, 2016. "A Mechanistic Model for Cooperative Behavior of Co-transcribing RNA Polymerases," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-38, August.
    12. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    13. Zheng, Liang & Jin, Peter J. & Huang, Helai, 2015. "An anisotropic continuum model considering bi-directional information impact," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 36-57.
    14. Tian, Junfang & Zhu, Chenqiang & Chen, Danjue & Jiang, Rui & Wang, Guanying & Gao, Ziyou, 2021. "Car following behavioral stochasticity analysis and modeling: Perspective from wave travel time," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 160-176.
    15. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    16. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    17. Faryal Ali & Zawar Hussain Khan & Khurram Shehzad Khattak & Thomas Aaron Gulliver & Akhtar Nawaz Khan, 2022. "A Microscopic Heterogeneous Traffic Flow Model Considering Distance Headway," Mathematics, MDPI, vol. 11(1), pages 1-20, December.
    18. Guillermo Abramson & Viktoriya Semeshenko & José Roberto Iglesias, 2013. "Cooperation and Defection at the Crossroads," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-8, April.
    19. Piotr Gołębiowski & Jolanta Żak & Ilona Jacyna-Gołda, 2020. "Approach to the Proecological Distribution of the Traffic Flow on the Transport Network from the Point of View of Carbon Dioxide," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    20. Denos C. Gazis, 2002. "The Origins of Traffic Theory," Operations Research, INFORMS, vol. 50(1), pages 69-77, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.