IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i11p2157-2163.html
   My bibliography  Save this article

Nonlinear statistical coupling

Author

Listed:
  • Nelson, Kenric P.
  • Umarov, Sabir

Abstract

By considering a nonlinear combination of the probabilities of a system, a physical interpretation of Tsallis statistics as representing the nonlinear coupling or decoupling of statistical states is proposed. The escort probability is interpreted as the coupled probability, with Q=1−q defined as the degree of nonlinear coupling between the statistical states. Positive values of Q have coupled statistical states, a larger entropy metric, and a maximum coupled-entropy distribution of compact-support coupled-Gaussians. Negative values of Q have decoupled statistical states and for −2

Suggested Citation

  • Nelson, Kenric P. & Umarov, Sabir, 2010. "Nonlinear statistical coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2157-2163.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:11:p:2157-2163
    DOI: 10.1016/j.physa.2010.01.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110000993
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.01.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nelson, Kenric P. & Umarov, Sabir R. & Kon, Mark A., 2017. "On the average uncertainty for systems with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 30-43.
    2. Nelson, Kenric P., 2015. "A definition of the coupled-product for multivariate coupled-exponentials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 187-192.
    3. Nelson, Kenric P., 2022. "Independent Approximates enable closed-form estimation of heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
    4. Nelson, Kenric P. & Kon, Mark A. & Umarov, Sabir R., 2019. "Use of the geometric mean as a statistic for the scale of the coupled Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 248-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:11:p:2157-2163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.