IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v541y2020ics0378437119320461.html
   My bibliography  Save this article

A Fixed-Mass multifractal approach for unweighted complex networks

Author

Listed:
  • Pavón-Domínguez, Pablo
  • Moreno-Pulido, Soledad

Abstract

Complex networks have been studied in recent years due to their relevance in biological, social and technical real systems, such as the world wide web, social networks and biochemical interactions. One of the most current features of complex networks is the presence of (multi-)fractal properties. In spite of the amount of contributions that have been developed in fractal and multifractal analysis, all of them have focused on the adaptation of Fixed-size algorithms (FSA) to complex networks, mostly box-counting and sandbox procedures. In this manuscript, a Fixed-mass algorithm (FMA) is adapted to explore the (multi-)fractality of unweighted complex networks is first proposed on the basis on a box-counting procedure. Thus, the aim of this work is to explore the applicability of a FMA to study fractal and multifractal characteristics of unweighted complex networks. After describing the proposed FMA for complex networks, it is tested in several kinds of complex networks such as deterministic, synthetic and real ones. Results suggest that FMA is able to adequately reproduce the fractal and multifractal properties of synthetic complex networks (scale-free, small-world and random). In addition, the algorithm is used for the multifractal description of real complex networks. The main advantage of FMA over FSA is that the minimum configuration of boxes (ideal) for completely covering the network is known. Therefore, results are quite precise when a reasonable covering configuration is obtained, allowing the reconstruction of the Mass exponent, τ, and the Dimension function, D(q), with proper goodness-fits.

Suggested Citation

  • Pavón-Domínguez, Pablo & Moreno-Pulido, Soledad, 2020. "A Fixed-Mass multifractal approach for unweighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
  • Handle: RePEc:eee:phsmap:v:541:y:2020:i:c:s0378437119320461
    DOI: 10.1016/j.physa.2019.123670
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119320461
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. E. J. Newman & D. J. Watts, 1999. "Renormalization Group Analysis of the Small-World Network Model," Working Papers 99-04-029, Santa Fe Institute.
    2. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    3. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    4. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    5. Tél, Tamás & Fülöp, Ágnes & Vicsek, Tamás, 1989. "Determination of fractal dimensions for geometrical multifractals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 159(2), pages 155-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moreno-Pulido, Soledad & Pavón-Domínguez, Pablo & Burgos-Pintos, Pedro, 2021. "Temporal evolution of multifractality in the Madrid Metro subway network," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Pavón-Domínguez, Pablo & Moreno-Pulido, Soledad, 2022. "Sandbox fixed-mass algorithm for multifractal unweighted complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavón-Domínguez, Pablo & Moreno-Pulido, Soledad, 2022. "Sandbox fixed-mass algorithm for multifractal unweighted complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    3. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    4. Retière, N. & Sidqi, Y. & Frankhauser, P., 2022. "A steady-state analysis of distribution networks by diffusion-limited-aggregation and multifractal geometry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    5. Zhou, Yuan-Wu & Liu, Jin-Long & Yu, Zu-Guo & Zhao, Zhi-Qin & Anh, Vo, 2014. "Fractal and complex network analyses of protein molecular dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 21-32.
    6. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2020. "A box-covering Tsallis information dimension and non-extensive property of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    8. Zeng, Zhi-Jian & Xie, Chi & Yan, Xin-Guo & Hu, Jue & Mao, Zhou, 2016. "Are stock market networks non-fractal? Evidence from New York Stock Exchange," Finance Research Letters, Elsevier, vol. 17(C), pages 97-102.
    9. Liu, Chuang & Zhou, Wei-Xing & Yuan, Wei-Kang, 2010. "Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2675-2681.
    10. Huang, Da-Wen & Yu, Zu-Guo & Anh, Vo, 2017. "Multifractal analysis and topological properties of a new family of weighted Koch networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 695-705.
    11. Liao, Hao & Wu, Xingtong & Wang, Bing-Hong & Wu, Xiangyang & Zhou, Mingyang, 2019. "Solving the speed and accuracy of box-covering problem in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 954-963.
    12. B. Zhang & J. Wang & W. Zhang & G. C. Wang, 2020. "Nonlinear Scaling Behavior of Visible Volatility Duration for Financial Statistical Physics Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 373-389, August.
    13. Yonghong Jin & Qi Zhang & Lifei Shan & Sai-Ping Li, 2015. "Characteristics of Venture Capital Network and Its Correlation with Regional Economy: Evidence from China," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-20, September.
    14. de Sá, Luiz Alberto Pereira & Zielinski, Kallil M.C. & Rodrigues, Érick Oliveira & Backes, André R. & Florindo, João B. & Casanova, Dalcimar, 2022. "A novel approach to estimated Boulingand-Minkowski fractal dimension from complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    15. Lei, Mingli, 2022. "Information dimension based on Deng entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    16. Nie, Chun-Xiao & Song, Fu-Tie, 2018. "Analyzing the stock market based on the structure of kNN network," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 148-159.
    17. Wei, Bo & Deng, Yong, 2019. "A cluster-growing dimension of complex networks: From the view of node closeness centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 80-87.
    18. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    19. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    20. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:541:y:2020:i:c:s0378437119320461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.