IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3970-d393439.html
   My bibliography  Save this article

Community Resilience-Oriented Optimal Micro-Grid Capacity Expansion Planning: The Case of Totarabank Eco-Village, New Zealand

Author

Listed:
  • Soheil Mohseni

    (Sustainable Energy Systems, School of Engineering and Computer Science, Faculty of Engineering, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand)

  • Alan C. Brent

    (Sustainable Energy Systems, School of Engineering and Computer Science, Faculty of Engineering, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
    Department of Industrial Engineering and the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University, Stellenbosch 7600, South Africa)

  • Daniel Burmester

    (Sustainable Energy Systems, School of Engineering and Computer Science, Faculty of Engineering, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand)

Abstract

In the grid-tied micro-grid context, energy resilience can be defined as the time period that a local energy system can supply the critical loads during an unplanned upstream grid outage. While the role of renewable-based micro-grids in enhancing communities’ energy resilience is well-appreciated, the academic literature on the techno-economic optimisation of community-scale micro-grids lacks a quantitative decision support analysis concerning the inclusion of a minimum resilience constraint in the optimisation process. Utilising a specifically-developed, time-based resilience capacity characterisation method to quantify the sustainability of micro-grids in the face of different levels of extended grid power outages, this paper facilitates stakeholder decision-making on the trade-off between the whole-life cost of a community micro-grid system and its degree of resilience. Furthermore, this paper focuses on energy infrastructure expansion planning, aiming to analyse the importance of micro-grid reinforcement to meet new sources of electricity demand—particularly, transport electrification—in addition to the business-as-usual demand growth. Using quantitative case study evidence from the Totarabank Subdivision in New Zealand, the paper concludes that at the current feed-in-tariff rate (NZ$0.08/kWh), the life cycle profitability of resilience-oriented community micro-grid capacity reinforcement is guaranteed within a New Zealand context, though constrained by capital requirements.

Suggested Citation

  • Soheil Mohseni & Alan C. Brent & Daniel Burmester, 2020. "Community Resilience-Oriented Optimal Micro-Grid Capacity Expansion Planning: The Case of Totarabank Eco-Village, New Zealand," Energies, MDPI, vol. 13(15), pages 1-29, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3970-:d:393439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3970/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3970/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Ibanez & Steven Lavrenz & Konstantina Gkritza & Diego A. Mejia-Giraldo & Venkat Krishnan & James D. McCalley & Arun K. Somani, 2016. "Resilience and robustness in long-term planning of the national energy and transportation system," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 12(1/2), pages 82-103.
    2. Shaban Boloukat, Mohammad Hadi & Akbari Foroud, Asghar, 2016. "Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming," Energy, Elsevier, vol. 113(C), pages 776-787.
    3. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    4. Hemmati, Reza & Saboori, Hedayat & Siano, Pierluigi, 2017. "Coordinated short-term scheduling and long-term expansion planning in microgrids incorporating renewable energy resources and energy storage systems," Energy, Elsevier, vol. 134(C), pages 699-708.
    5. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    6. Eleonora Achiluzzi & Kirushaanth Kobikrishna & Abenayan Sivabalan & Carlos Sabillon & Bala Venkatesh, 2020. "Optimal Asset Planning for Prosumers Considering Energy Storage and Photovoltaic (PV) Units: A Stochastic Approach," Energies, MDPI, vol. 13(7), pages 1-20, April.
    7. Warneryd, Martin & Håkansson, Maria & Karltorp, Kersti, 2020. "Unpacking the complexity of community microgrids: A review of institutions’ roles for development of microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boris V. Malozyomov & Nikita V. Martyushev & Elena V. Voitovich & Roman V. Kononenko & Vladimir Yu. Konyukhov & Vadim Tynchenko & Viktor Alekseevich Kukartsev & Yadviga Aleksandrovna Tynchenko, 2023. "Designing the Optimal Configuration of a Small Power System for Autonomous Power Supply of Weather Station Equipment," Energies, MDPI, vol. 16(13), pages 1-30, June.
    2. Vadim Manusov & Svetlana Beryozkina & Muso Nazarov & Murodbek Safaraliev & Inga Zicmane & Pavel Matrenin & Anvari Ghulomzoda, 2022. "Optimal Management of Energy Consumption in an Autonomous Power System Considering Alternative Energy Sources," Mathematics, MDPI, vol. 10(3), pages 1-17, February.
    3. Alyssa Diva Mustika & Rémy Rigo-Mariani & Vincent Debusschere & Amaury Pachurka, 2022. "New Members Selection for the Expansion of Energy Communities," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    4. Soheil Mohseni & Alan C. Brent & Daniel Burmester, 2021. "Off-Grid Multi-Carrier Microgrid Design Optimisation: The Case of Rakiura–Stewart Island, Aotearoa–New Zealand," Energies, MDPI, vol. 14(20), pages 1-28, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lenhart, Stephanie & Araújo, Kathleen, 2021. "Microgrid decision-making by public power utilities in the United States: A critical assessment of adoption and technological profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    3. Hussain Abdalla Sajwani & Bassel Soudan & Abdul Ghani Olabi, 2024. "Empowering Sustainability: Understanding Determinants of Consumer Investment in Microgrid Technology in the UAE," Energies, MDPI, vol. 17(9), pages 1-28, May.
    4. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    5. Nazar, Mehrdad Setayesh & Jafarpour, Pourya & Shafie-khah, Miadreza & Catalão, João P.S., 2024. "Optimal planning of self-healing multi-carriers energy systems considering integration of smart buildings and parking lots energy resources," Energy, Elsevier, vol. 286(C).
    6. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    7. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    8. Majid Ali & Juan C. Vasquez & Josep M. Guerrero & Yajuan Guan & Saeed Golestan & Jorge De La Cruz & Mohsin Ali Koondhar & Baseem Khan, 2023. "A Comparison of Grid-Connected Local Hospital Loads with Typical Backup Systems and Renewable Energy System Based Ad Hoc Microgrids for Enhancing the Resilience of the System," Energies, MDPI, vol. 16(4), pages 1-20, February.
    9. Kaczmarski, Jesse I., 2022. "Public support for community microgrid services," Energy Economics, Elsevier, vol. 115(C).
    10. Tomin, Nikita & Shakirov, Vladislav & Kozlov, Aleksander & Sidorov, Denis & Kurbatsky, Victor & Rehtanz, Christian & Lora, Electo E.S., 2022. "Design and optimal energy management of community microgrids with flexible renewable energy sources," Renewable Energy, Elsevier, vol. 183(C), pages 903-921.
    11. Nelson, James & Johnson, Nathan G. & Fahy, Kelsey & Hansen, Timothy A., 2020. "Statistical development of microgrid resilience during islanding operations," Applied Energy, Elsevier, vol. 279(C).
    12. Gonzalez-Reina, Antonio Enrique & Garcia-Torres, Felix & Girona-Garcia, Victor & Sanchez-Sanchez-de-Puerta, Alvaro & Jimenez-Romero, F.J. & Jimenez-Hornero, Jorge E., 2024. "Cooperative model predictive control for avoiding critical instants of energy resilience in networked microgrids," Applied Energy, Elsevier, vol. 369(C).
    13. Muttaqee, Mahmood & Furqan, Maham & Boudet, Hilary, 2023. "Community response to microgrid development: Case studies from the U.S," Energy Policy, Elsevier, vol. 181(C).
    14. Mukhopadhyay, Bineeta & Das, Debapriya, 2021. "Optimal multi-objective expansion planning of a droop-regulated islanded microgrid," Energy, Elsevier, vol. 218(C).
    15. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    17. Gazijahani, Farhad Samadi & Salehi, Javad, 2018. "Reliability constrained two-stage optimization of multiple renewable-based microgrids incorporating critical energy peak pricing demand response program using robust optimization approach," Energy, Elsevier, vol. 161(C), pages 999-1015.
    18. Nelson, James R. & Johnson, Nathan G., 2020. "Model predictive control of microgrids for real-time ancillary service market participation," Applied Energy, Elsevier, vol. 269(C).
    19. Shi, Jiaqi & Ma, Liya & Li, Chenchen & Liu, Nian & Zhang, Jianhua, 2022. "A comprehensive review of standards for distributed energy resource grid-integration and microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    20. Michael H. Spiegel & Eric M. S. P. Veith & Thomas I. Strasser, 2020. "The Spectrum of Proactive, Resilient Multi-Microgrid Scheduling: A Systematic Literature Review," Energies, MDPI, vol. 13(17), pages 1-37, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3970-:d:393439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.