IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v594y2022ics0378437122000978.html
   My bibliography  Save this article

A novel method for forecasting time series based on directed visibility graph and improved random walk

Author

Listed:
  • Hu, Yuntong
  • Xiao, Fuyuan

Abstract

Recently network-based method for forecasting time series has become a hot research topic. Although some proposed network-based methods achieve good performance in forecasting some series, how to mine more information of time series and make more accurate predictions is still an open question. To address this issue, we propose a novel reconstructing–forecasting method based on directed visibility graph and random walk process. Firstly, the observed time series is reconstructed to explore more information of series. Then, the reconstructed series is converted into a directed visibility graph. Afterwards, the reconstructed series is predicted with the similarity distribution obtained from improved random walk process. Eventually, the prediction of original time series is calculated using the predictions and the similarity distribution of the reconstructed one. To test the forecasting performance, the proposed method is applied to forecast construction cost index (CCI), China’s quarterly total GDP growth (GDP) and China’s tertiary industry quarterly GDP growth (TI). The results of experiments indicate that, with good robustness, the proposed method is of ability to provide more accurate predictions than compared methods.

Suggested Citation

  • Hu, Yuntong & Xiao, Fuyuan, 2022. "A novel method for forecasting time series based on directed visibility graph and improved random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
  • Handle: RePEc:eee:phsmap:v:594:y:2022:i:c:s0378437122000978
    DOI: 10.1016/j.physa.2022.127029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122000978
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    2. Sadaei, Hossein Javedani & de Lima e Silva, Petrônio Cândido & Guimarães, Frederico Gadelha & Lee, Muhammad Hisyam, 2019. "Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series," Energy, Elsevier, vol. 175(C), pages 365-377.
    3. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    4. Tanizawa, Toshihiro & Nakamura, Tomomichi & Taya, Fumihiko & Small, Michael, 2018. "Constructing directed networks from multivariate time series using linear modelling technique," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 437-455.
    5. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    6. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    7. Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
    8. Niklas Boers & Bedartha Goswami & Aljoscha Rheinwalt & Bodo Bookhagen & Brian Hoskins & Jürgen Kurths, 2019. "Complex networks reveal global pattern of extreme-rainfall teleconnections," Nature, Nature, vol. 566(7744), pages 373-377, February.
    9. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    10. Rong Zhang & Baabak Ashuri & Yong Deng, 2017. "A novel method for forecasting time series based on fuzzy logic and visibility graph," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 759-783, December.
    11. Coelho, Igor M. & Coelho, Vitor N. & Luz, Eduardo J. da S. & Ochi, Luiz S. & Guimarães, Frederico G. & Rios, Eyder, 2017. "A GPU deep learning metaheuristic based model for time series forecasting," Applied Energy, Elsevier, vol. 201(C), pages 412-418.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schmidt, Jonas & Köhne, Daniel, 2023. "A simple scalable linear time algorithm for horizontal visibility graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    2. Hu, Yuntong & Xiao, Fuyuan, 2022. "An efficient forecasting method for time series based on visibility graph and multi-subgraph similarity," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yuntong & Xiao, Fuyuan, 2022. "An efficient forecasting method for time series based on visibility graph and multi-subgraph similarity," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Tianxiang Zhan & Fuyuan Xiao, 2021. "A Fast Evidential Approach for Stock Forecasting," Papers 2104.05204, arXiv.org, revised Jul 2021.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Zhen Zeng & Rachneet Kaur & Suchetha Siddagangappa & Saba Rahimi & Tucker Balch & Manuela Veloso, 2023. "Financial Time Series Forecasting using CNN and Transformer," Papers 2304.04912, arXiv.org.
    5. Jiang, Weiheng & Wu, Xiaogang & Gong, Yi & Yu, Wanxin & Zhong, Xinhui, 2020. "Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption," Energy, Elsevier, vol. 193(C).
    6. Ahmad M Awajan & Mohd Tahir Ismail & S AL Wadi, 2018. "Improving forecasting accuracy for stock market data using EMD-HW bagging," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-20, July.
    7. Simona Mikšíková & David Ulčák & František Kuda, 2022. "Analysis of Malfunctions in Selected Parking Systems in the Czech Republic," Sustainability, MDPI, vol. 14(3), pages 1-10, February.
    8. Dyna Heng & Anna Ivanova & Rodrigo Mariscal & Ms. Uma Ramakrishnan & Joyce Wong, 2016. "Advancing Financial Development in Latin America and the Caribbean," IMF Working Papers 2016/081, International Monetary Fund.
    9. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    10. Karzan Mahdi Ghafour & Abdulqadir Rahomee Ahmed Aljanabi, 2023. "The role of forecasting in preventing supply chain disruptions during the COVID-19 pandemic: a distributor-retailer perspective," Operations Management Research, Springer, vol. 16(2), pages 780-793, June.
    11. Koopman, Siem Jan & Ooms, Marius, 2006. "Forecasting daily time series using periodic unobserved components time series models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 885-903, November.
    12. Kosuke Kawakami & Hirokazu Kobayashi & Kazuhide Nakata, 2021. "Seasonal Inventory Management Model for Raw Materials in Steel Industry," Interfaces, INFORMS, vol. 51(4), pages 312-324, July.
    13. Xianbo Li, 2022. "Sequence Model and Prediction for Sustainable Enrollments in Chinese Universities," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    14. Andrea Kolková & Petr Rozehnal, 2022. "Hybrid demand forecasting models: pre-pandemic and pandemic use studies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 699-725, September.
    15. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    16. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    17. Xi Wu & Adam Blake, 2023. "The Impact of the COVID-19 Crisis on Air Travel Demand: Some Evidence From China," SAGE Open, , vol. 13(1), pages 21582440231, January.
    18. Wolfram Rozas & Rafael Pastor-Vargas & Angel Miguel García-Vico & José Carpio, 2023. "Consumption–Production Profile Categorization in Energy Communities," Energies, MDPI, vol. 16(19), pages 1-27, October.
    19. Kang, Wensheng & Ratti, Ronald. A. & Vespignani, Joaquin, 2016. "The implications of liquidity expansion in China for the US dollar," Working Papers 2016-02, University of Tasmania, Tasmanian School of Business and Economics.
    20. Ching-Chih Chang & Yu-Wei Chang & Po-Chien Huang, 2022. "Effects of the INDC and GGRMA Regulations on the Impact of PM 2.5 Particle Emissions on Maritime Ports: A Study of Human Health and Environmental Costs," Sustainability, MDPI, vol. 14(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:594:y:2022:i:c:s0378437122000978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.