IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v512y2018icp437-455.html
   My bibliography  Save this article

Constructing directed networks from multivariate time series using linear modelling technique

Author

Listed:
  • Tanizawa, Toshihiro
  • Nakamura, Tomomichi
  • Taya, Fumihiko
  • Small, Michael

Abstract

We describe a method to construct directed networks from multivariate time series which has several advantages over the widely accepted methods. This method is based on an information theoretic reduction of linear (auto-regressive) models. The models are called reduced auto-regressive (RAR) models. The procedure of the proposed method is composed of three steps: (i) each time series is treated as a basic node of a network, (ii) multivariate RAR models are built and the constituent information in the models is summarized, and (iii) nodes are connected with a directed link based on that summary information. The proposed method is demonstrated for numerical data generated by known systems, and applied to several actual time series of special interest. Although the proposed method can identify connectivity, there are three points to keep in mind: (1) the proposed method cannot always identify nonlinear relationships among components, (2) as constructing RAR models is NP-hard, the network constructed by the proposed method might be near-optimal network when we cannot perform an exhaustive search, and (3) it is difficult to construct appropriate networks when the observational noise is large.

Suggested Citation

  • Tanizawa, Toshihiro & Nakamura, Tomomichi & Taya, Fumihiko & Small, Michael, 2018. "Constructing directed networks from multivariate time series using linear modelling technique," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 437-455.
  • Handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:437-455
    DOI: 10.1016/j.physa.2018.08.137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711831080X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.08.137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    2. Farkas, I. & Jeong, H. & Vicsek, T. & Barabási, A.-L. & Oltvai, Z.N., 2003. "The topology of the transcription regulatory network in the yeast, Saccharomyces cerevisiae," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 318(3), pages 601-612.
    3. Máté Nagy & Zsuzsa Ákos & Dora Biro & Tamás Vicsek, 2010. "Hierarchical group dynamics in pigeon flocks," Nature, Nature, vol. 464(7290), pages 890-893, April.
    4. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    5. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yuntong & Xiao, Fuyuan, 2022. "A novel method for forecasting time series based on directed visibility graph and improved random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    2. Tian, Hu & Zheng, Xiaolong & Zeng, Daniel Danjun, 2019. "Analyzing the dynamic sectoral influence in Chinese and American stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    3. Chen, Yanhua & Li, Youwei & Pantelous, Athanasios A. & Stanley, H. Eugene, 2022. "Short-run disequilibrium adjustment and long-run equilibrium in the international stock markets: A network-based approach," International Review of Financial Analysis, Elsevier, vol. 79(C).
    4. Bu, Hui & Tang, Wenjin & Wu, Junjie, 2019. "Time-varying comovement and changes of comovement structure in the Chinese stock market: A causal network method," Economic Modelling, Elsevier, vol. 81(C), pages 181-204.
    5. Papana, Angeliki & Kyrtsou, Catherine & Kugiumtzis, Dimitris & Diks, Cees, 2017. "Financial networks based on Granger causality: A case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 65-73.
    6. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    7. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    8. Christophe Chorro & Emmanuelle Jay & Philippe De Peretti & Thibault Soler, 2021. "Frequency causality measures and Vector AutoRegressive (VAR) models: An improved subset selection method suited to parsimonious systems," Documents de travail du Centre d'Economie de la Sorbonne 21013, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    9. Výrost, Tomáš, 2012. "Country effects in CEE3 stock market networks: a preliminary study," MPRA Paper 43481, University Library of Munich, Germany.
    10. Yanhua Chen & Rosario N Mantegna & Athanasios A Pantelous & Konstantin M Zuev, 2018. "A dynamic analysis of S&P 500, FTSE 100 and EURO STOXX 50 indices under different exchange rates," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-40, March.
    11. Materassi, Donatello & Innocenti, Giacomo, 2009. "Unveiling the connectivity structure of financial networks via high-frequency analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3866-3878.
    12. Georgios Antonios Sarantitis & Theophilos Papadimitriou & Periklis Gogas, 2018. "A Network Analysis of the United Kingdom’s Consumer Price Index," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 173-193, February.
    13. Lu, Shan & Zhao, Jichang & Wang, Huiwen & Ren, Ruoen, 2018. "Herding boosts too-connected-to-fail risk in stock market of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 945-964.
    14. Danau, Daniel, 2020. "Prudence and preference for flexibility gain," European Journal of Operational Research, Elsevier, vol. 287(2), pages 776-785.
    15. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    16. Tan T. M. Le & Franck Martin & Duc K. Nguyen, 2018. "Dynamic connectedness of global currencies: a conditional Granger-causality approach," Economics Working Paper Archive (University of Rennes & University of Caen) 2018-04, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    17. Caraiani, Petre, 2017. "The predictive power of local properties of financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 79-90.
    18. Liping Wang & Jiawei Li & Lifan Zhao & Zhizhuo Kou & Xiaohan Wang & Xinyi Zhu & Hao Wang & Yanyan Shen & Lei Chen, 2023. "Methods for Acquiring and Incorporating Knowledge into Stock Price Prediction: A Survey," Papers 2308.04947, arXiv.org.
    19. Gustavo Peralta, 2015. "Network-based Measures as Leading Indicators of Market Instability: The case of the Spanish Stock," CNMV Working Papers CNMV Working Papers no 59, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    20. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:437-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.