IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v616y2023ics0378437123001565.html
   My bibliography  Save this article

A simple scalable linear time algorithm for horizontal visibility graphs

Author

Listed:
  • Schmidt, Jonas
  • Köhne, Daniel

Abstract

Horizontal Visibility Graphs establish a connection between time series and complex networks. As a feature, they have shown strong results in time series classification. For real-world applications, algorithms for computing HVGs are necessary that work efficiently on streamed data, that can be parallelized, and whose runtime is independent of the type of time series. Our proposed algorithm extends the fast horizontal visibility algorithm of Zhu et al. satisfying all these desirable properties. The extended version stays worst-case in O(n), works additionally efficiently on streamed data, and becomes parallelizable. Contrary to recent publications, it does not require a complex data structure. This approach enables the computation of HVGs with millions of vertices in a short period, opening up new application areas of HVGs for time series generated batch-wise or resulting from measurements with a high sampling rate.

Suggested Citation

  • Schmidt, Jonas & Köhne, Daniel, 2023. "A simple scalable linear time algorithm for horizontal visibility graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
  • Handle: RePEc:eee:phsmap:v:616:y:2023:i:c:s0378437123001565
    DOI: 10.1016/j.physa.2023.128601
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123001565
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Jun & Zhang, Yujie & Wu, Peng & Li, Huijia, 2022. "An analysis of the global fuel-trading market based on the visibility graph approach," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Hu, Yuntong & Xiao, Fuyuan, 2022. "A novel method for forecasting time series based on directed visibility graph and improved random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    3. Yang, Yue & Yang, Huijie, 2008. "Complex network-based time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1381-1386.
    4. Hu, Yuntong & Xiao, Fuyuan, 2022. "An efficient forecasting method for time series based on visibility graph and multi-subgraph similarity," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Gutin, Gregory & Mansour, Toufik & Severini, Simone, 2011. "A characterization of horizontal visibility graphs and combinatorics on words," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2421-2428.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yuhong & Zhao, Xinyao, 2024. "How does node centrality in a financial network affect asset price prediction?," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    2. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    3. Tang, Jinjun & Wang, Yinhai & Wang, Hua & Zhang, Shen & Liu, Fang, 2014. "Dynamic analysis of traffic time series at different temporal scales: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 303-315.
    4. Sudhamayee, K. & Krishna, M. Gopal & Manimaran, P., 2023. "Simplicial network analysis on EEG signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Bezsudnov, I.V. & Snarskii, A.A., 2014. "From the time series to the complex networks: The parametric natural visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 53-60.
    6. Liu, Keshi & Weng, Tongfeng & Gu, Changgui & Yang, Huijie, 2020. "Visibility graph analysis of Bitcoin price series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    7. Yuan, Qianshun & Zhang, Jing & Wang, Haiying & Gu, Changgui & Yang, Huijie, 2023. "A multi-scale transition matrix approach to chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Xue Pan & Lei Hou & Mutua Stephen & Huijie Yang & Chenping Zhu, 2014. "Evaluation of Scaling Invariance Embedded in Short Time Series," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.
    9. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    10. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2018. "Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 560-571.
    11. Yao, Can-Zhong & Lin, Ji-Nan & Zheng, Xu-Zhou & Liu, Xiao-Feng, 2015. "The study of RMB exchange rate complex networks based on fluctuation mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 359-376.
    12. Tang, Jinjun & Wang, Yinhai & Liu, Fang, 2013. "Characterizing traffic time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4192-4201.
    13. Bai, Shiwei & Niu, Min, 2022. "The visibility graph of n-bonacci sequence," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    14. Yue Yang & Changgui Gu & Qin Xiao & Huijie Yang, 2017. "Evolution of scaling behaviors embedded in sentence series from A Story of the Stone," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-14, February.
    15. Hu, Xiaohua & Niu, Min, 2023. "Horizontal visibility graphs mapped from multifractal trinomial measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    16. Ömer Akgüller & Mehmet Ali Balcı & Larissa M. Batrancea & Lucian Gaban, 2023. "Path-Based Visibility Graph Kernel and Application for the Borsa Istanbul Stock Network," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
    17. Nie, Chun-Xiao, 2019. "Applying correlation dimension to the analysis of the evolution of network structure," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 294-303.
    18. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
    19. Bartolo Luque & Lucas Lacasa & Fernando J Ballesteros & Alberto Robledo, 2011. "Feigenbaum Graphs: A Complex Network Perspective of Chaos," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    20. Nie, Chun-Xiao, 2022. "Analysis of critical events in the correlation dynamics of cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:616:y:2023:i:c:s0378437123001565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.