IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v584y2021ics0378437121006397.html
   My bibliography  Save this article

The role of degree correlation in shaping filter bubbles in social networks

Author

Listed:
  • Min, Yong
  • Zhou, Yuying
  • Liu, Yuhang
  • Zhang, Jian
  • Xuan, Qi
  • Jin, Xiaogang
  • Cai, He

Abstract

Filter bubbles shelter people from unconcerned but important information, which is a critical problem in modern online social networks. Although a quantitative model of filter bubbles is still missing, the identification and impact of filter bubbles are widely debated both at a scientific and political level. To shed light on this gap, we introduce a theoretical directed network model of filter bubbles with degree correlations and mathematically analyze information diffusion dynamics on the model. We find that the internal structure of filter bubbles can be modeled by the directed scale-free network with both negative (a node tend to possess high in-degree and low out-degree, or vice versa) and assortative (two nodes with similar degrees tend to be connected) degree correlation. Traditionally, filter bubbles are usually associated with the community structure and emphasize the sparseness of external connections to isolate the spreading of diverse information. However, the negative-assortative degree correlation shows that the filter bubble can spontaneously resist the spreading of non-preferred information (i.e., information with relatively lower transmissibility). Moreover, we study the competition epidemic of two information on the negative-assortative networks, and find that both of the information can coexist only if all nodes prefer the same information.

Suggested Citation

  • Min, Yong & Zhou, Yuying & Liu, Yuhang & Zhang, Jian & Xuan, Qi & Jin, Xiaogang & Cai, He, 2021. "The role of degree correlation in shaping filter bubbles in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
  • Handle: RePEc:eee:phsmap:v:584:y:2021:i:c:s0378437121006397
    DOI: 10.1016/j.physa.2021.126366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121006397
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:nas:journl:v:115:y:2018:p:12435-12440 is not listed on IDEAS
    2. Oliver Williams & Charo I Del Genio, 2014. "Degree Correlations in Directed Scale-Free Networks," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-6, October.
    3. Chengcheng Shao & Giovanni Luca Ciampaglia & Onur Varol & Kai-Cheng Yang & Alessandro Flammini & Filippo Menczer, 2018. "The spread of low-credibility content by social bots," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Higgins & Tarun Sabarwal, 2023. "Control and spread of contagion in networks with global effects," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 25(6), pages 1149-1187, December.
    2. Xia, Huosong & Wang, Yuan & Zhang, Justin Zuopeng & Zheng, Leven J. & Kamal, Muhammad Mustafa & Arya, Varsha, 2023. "COVID-19 fake news detection: A hybrid CNN-BiLSTM-AM model," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    3. Csaba Both & Nima Dehmamy & Rose Yu & Albert-László Barabási, 2023. "Accelerating network layouts using graph neural networks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Howell, Bronwyn E. & Potgieter, Petrus H., 2023. "AI-generated lemons: a sour outlook for content producers?," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277971, International Telecommunications Society (ITS).
    5. Wentao Xu & Kazutoshi Sasahara, 2022. "Characterizing the roles of bots on Twitter during the COVID-19 infodemic," Journal of Computational Social Science, Springer, vol. 5(1), pages 591-609, May.
    6. John Higgins & Tarun Sabarwal, 2021. "Control and Spread of Contagion in Networks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202111, University of Kansas, Department of Economics.
    7. Suzanne Elayan & Martin Sykora, 2024. "Digital intermediaries in pandemic times: social media and the role of bots in communicating emotions and stress about Coronavirus," Journal of Computational Social Science, Springer, vol. 7(3), pages 2481-2504, December.
    8. Qing Cai & Mahardhika Pratama & Sameer Alam, 2019. "Interdependency and Vulnerability of Multipartite Networks under Target Node Attacks," Complexity, Hindawi, vol. 2019, pages 1-16, November.
    9. Andrey Dmitriev & Victor Dmitriev & Stepan Balybin, 2019. "Self-Organized Criticality on Twitter: Phenomenological Theory and Empirical Investigation Based on Data Analysis Results," Complexity, Hindawi, vol. 2019, pages 1-16, December.
    10. Vibha Sharma & Fatema Sultana & Sohaib Alam & Sameena Banu, 2024. "Trolling as a Disruptive Tool for Human Rights Violations: An Exploration of the Challenges Faced by Performance Artists," World Journal of English Language, Sciedu Press, vol. 14(4), pages 411-411, July.
    11. Lynnette Hui Xian Ng & Ian Kloo & Samantha Clark & Kathleen M. Carley, 2024. "An exploratory analysis of COVID bot vs human disinformation dissemination stemming from the Disinformation Dozen on Telegram," Journal of Computational Social Science, Springer, vol. 7(1), pages 695-720, April.
    12. Onur Varol & Ismail Uluturk, 2020. "Journalists on Twitter: self-branding, audiences, and involvement of bots," Journal of Computational Social Science, Springer, vol. 3(1), pages 83-101, April.
    13. Riccardo Gallotti & Francesco Valle & Nicola Castaldo & Pierluigi Sacco & Manlio De Domenico, 2020. "Assessing the risks of ‘infodemics’ in response to COVID-19 epidemics," Nature Human Behaviour, Nature, vol. 4(12), pages 1285-1293, December.
    14. Cheng, Chun & Luo, Yun & Yu, Changbin, 2020. "Dynamic mechanism of social bots interfering with public opinion in network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    15. Wenkai Zhou & Chi Zhang & Linwan Wu & Meghana Shashidhar, 2023. "ChatGPT and marketing: Analyzing public discourse in early Twitter posts," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 693-706, December.
    16. Joshua Uyheng & Kathleen M. Carley, 2020. "Bots and online hate during the COVID-19 pandemic: case studies in the United States and the Philippines," Journal of Computational Social Science, Springer, vol. 3(2), pages 445-468, November.
    17. Junhui Cai & Dan Yang & Wu Zhu & Haipeng Shen & Linda Zhao, 2021. "Network regression and supervised centrality estimation," Papers 2111.12921, arXiv.org.
    18. Zixuan Weng & Aijun Lin, 2022. "Public Opinion Manipulation on Social Media: Social Network Analysis of Twitter Bots during the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    19. Yevgeniy Golovchenko, 2020. "Measuring the scope of pro-Kremlin disinformation on Twitter," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-11, December.
    20. Kai-Cheng Yang & Emilio Ferrara & Filippo Menczer, 2022. "Botometer 101: social bot practicum for computational social scientists," Journal of Computational Social Science, Springer, vol. 5(2), pages 1511-1528, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:584:y:2021:i:c:s0378437121006397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.