IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v582y2021ics0378437121005380.html
   My bibliography  Save this article

Efficient mediated semi-quantum key distribution

Author

Listed:
  • Chen, Lingli
  • Li, Qin
  • Liu, Chengdong
  • Peng, Yu
  • Yu, Fang

Abstract

Mediated semi-quantum key distribution (MSQKD) allows two “classical” participants to establish a secret key with the help of an untrusted quantum third party (TP). In all existing MSQKD protocols, the quantum capability required by TP is high and thus it needs much cost in a real implementation. In this paper, we propose an efficient MSQKD protocol, where TP only needs to prepare and measure qubits in the X basis and two “classical” participants just have the ability to prepare and measure qubits in the Z basis. Compared with other similar MSQKD protocols, the proposed protocol reduces the capability requirements of TP without sacrificing the qubit efficiency.

Suggested Citation

  • Chen, Lingli & Li, Qin & Liu, Chengdong & Peng, Yu & Yu, Fang, 2021. "Efficient mediated semi-quantum key distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
  • Handle: RePEc:eee:phsmap:v:582:y:2021:i:c:s0378437121005380
    DOI: 10.1016/j.physa.2021.126265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121005380
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lai, Hong & Pieprzyk, Josef & Orgun, Mehmet A., 2020. "Novel quantum key distribution with shift operations based on Fibonacci and Lucas valued orbital angular momentum entangled states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    2. Frédéric Grosshans & Gilles Van Assche & Jérôme Wenger & Rosa Brouri & Nicolas J. Cerf & Philippe Grangier, 2003. "Quantum key distribution using gaussian-modulated coherent states," Nature, Nature, vol. 421(6920), pages 238-241, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Lizhou & Liu, Bin & Gao, Fei & Huang, Wei & Xu, Bingjie & Li, Yang, 2024. "Decoy-state quantum private query protocol with two-way communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    2. Cai, Xiao-Qiu & Wang, Tian-Yin & Wei, Chun-Yan & Gao, Fei, 2022. "Cryptanalysis of quantum digital signature for the access control of sensitive data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    3. Cai, Xiao-Qiu & Liu, Zi-Fan & Wei, Chun-Yan & Wang, Tian-Yin, 2022. "Long distance measurement-device-independent three-party quantum key agreement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiwu Zhu & Lei Mao & Hui Hu & Yijun Wang & Ying Guo, 2022. "Adaptive Continuous-Variable Quantum Key Distribution with Discrete Modulation Regulative in Free Space," Mathematics, MDPI, vol. 10(23), pages 1-8, November.
    2. Ji, Zhaoxu & Fan, Peiru & Zhang, Huanguo, 2022. "Entanglement swapping for Bell states and Greenberger–Horne–Zeilinger states in qubit systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    3. Zhiyue Zuo & Wenqi Peng & Hui Xian & Wenqi Jiang & Hao Luo & Sha Xiong & Ying Guo, 2023. "Suppression of Fading Noise in Satellite-Mediated Continuous-Variable Quantum Key Distribution via Clusterization," Mathematics, MDPI, vol. 11(16), pages 1-13, August.
    4. Hung-Wen Wang & Chia-Wei Tsai & Jason Lin & Yu-Yun Huang & Chun-Wei Yang, 2022. "Efficient and Secure Measure-Resend Authenticated Semi-Quantum Key Distribution Protocol against Reflecting Attack," Mathematics, MDPI, vol. 10(8), pages 1-19, April.
    5. Wenhao Yin & Yuhan Zhou & Duan Huang, 2023. "Denial-of-Service Attack Defense Strategy for Continuous Variable Quantum Key Distribution via Deep Learning," Mathematics, MDPI, vol. 11(12), pages 1-17, June.
    6. Florian Fesquet & Fabian Kronowetter & Michael Renger & Wun Kwan Yam & Simon Gandorfer & Kunihiro Inomata & Yasunobu Nakamura & Achim Marx & Rudolf Gross & Kirill G. Fedorov, 2024. "Demonstration of microwave single-shot quantum key distribution," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Cai, Xiao-Qiu & Wang, Tian-Yin & Wei, Chun-Yan & Gao, Fei, 2022. "Cryptanalysis of quantum digital signature for the access control of sensitive data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    8. Cai, Xiao-Qiu & Liu, Zi-Fan & Wei, Chun-Yan & Wang, Tian-Yin, 2022. "Long distance measurement-device-independent three-party quantum key agreement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    9. Chen, Zhou & Chen, Zhaofeng & Yang, Zhaogang & Hu, Jiaming & Yang, Yong & Chang, Lingqian & Lee, L. James & Xu, Tengzhou, 2015. "Preparation and characterization of vacuum insulation panels with super-stratified glass fiber core material," Energy, Elsevier, vol. 93(P1), pages 945-954.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:582:y:2021:i:c:s0378437121005380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.