IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v633y2024ics0378437123009822.html
   My bibliography  Save this article

Decoy-state quantum private query protocol with two-way communication

Author

Listed:
  • Qin, Lizhou
  • Liu, Bin
  • Gao, Fei
  • Huang, Wei
  • Xu, Bingjie
  • Li, Yang

Abstract

Quantum private query (QPQ) is a communication protocol established under the condition of mutual distrust between communication parties, which is used to solve the symmetrically private information retrieval problem in the quantum field. However, most of the existing QPQ protocols are based on the ideal light source. In practice, the multi-photon pulse generated by the transmitter will bring great security problems. We analyze the actual security of QPQ protocol in two-way communication, and find that database security and user privacy will be seriously threatened under multi-photon pulse. So we adopt the decoy state method to solve the actual security problem of QPQ protocol in view of the user side as the light source. The results show that the decoy state method is suitable for QPQ protocol of two-way communication, and can effectively defend against multi-photon pulse attacks.

Suggested Citation

  • Qin, Lizhou & Liu, Bin & Gao, Fei & Huang, Wei & Xu, Bingjie & Li, Yang, 2024. "Decoy-state quantum private query protocol with two-way communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
  • Handle: RePEc:eee:phsmap:v:633:y:2024:i:c:s0378437123009822
    DOI: 10.1016/j.physa.2023.129427
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123009822
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Lingli & Li, Qin & Liu, Chengdong & Peng, Yu & Yu, Fang, 2021. "Efficient mediated semi-quantum key distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    2. Liu, Xiao-Peng & Kang, Jia-Le & Xie, Jia-Hui & Zhang, Ming-Hui, 2022. "Efficient twin-field quantum key distribution with heralded single-photon source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Xiao-Qiu & Wang, Tian-Yin & Wei, Chun-Yan & Gao, Fei, 2022. "Cryptanalysis of quantum digital signature for the access control of sensitive data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    2. Cai, Xiao-Qiu & Liu, Zi-Fan & Wei, Chun-Yan & Wang, Tian-Yin, 2022. "Long distance measurement-device-independent three-party quantum key agreement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:633:y:2024:i:c:s0378437123009822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.