IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v575y2021ics0378437121003289.html
   My bibliography  Save this article

Improving comfort level in traffic flow of CACC vehicles at lane drop on two-lane highways

Author

Listed:
  • Liu, Huaqing
  • Jiang, Rui

Abstract

This paper studies traffic flow of cooperative adaptive cruise control (CACC) vehicles at lane drop on two-lane highways. A constant time gap algorithm has been used for the upper level longitudinal control of the CACC vehicles. In the control zone upstream of the lane drop, a heuristic control scheme of the CACC vehicles has been used, in which virtual leading vehicle has been introduced by mapping a vehicle on the neighboring lane to the present lane. To improve the passenger comfort, a restriction of the command acceleration caused by virtual leading vehicle, denoted as acmd,lim, has been introduced. It is shown that with the decrease of |acmd,lim|, while the capacity does not change, the comfort of passengers significantly improves.

Suggested Citation

  • Liu, Huaqing & Jiang, Rui, 2021. "Improving comfort level in traffic flow of CACC vehicles at lane drop on two-lane highways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
  • Handle: RePEc:eee:phsmap:v:575:y:2021:i:c:s0378437121003289
    DOI: 10.1016/j.physa.2021.126055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121003289
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davis, L.C., 2013. "The effects of mechanical response on the dynamics and string stability of a platoon of adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3798-3805.
    2. Davis, L.C., 2006. "Effect of cooperative merging on the synchronous flow phase of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(2), pages 606-618.
    3. Zhou, Yang & Ahn, Soyoung, 2019. "Robust local and string stability for a decentralized car following control strategy for connected automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 175-196.
    4. Davis, L.C., 2016. "Improving traffic flow at a 2-to-1 lane reduction with wirelessly connected, adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 320-332.
    5. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 588-597.
    6. Davis, L.C., 2020. "Optimal merging into a high-speed lane dedicated to connected autonomous vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    7. Kerner, Boris S., 2021. "Effect of autonomous driving on traffic breakdown in mixed traffic flow: A comparison of classical ACC with three-traffic-phase-ACC (TPACC)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    8. Lu, Xiao-Yun & Tan, Han-Shue & Shladover, Steven E. & Hedrick, J. Karl, 2000. "Modeling, Design and Implementation of Longitudinal Control Algorithm for Automated Vehicle Merging," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9sn473bg, Institute of Transportation Studies, UC Berkeley.
    9. Davis, L.C., 2018. "Dynamics of a long platoon of cooperative adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 818-834.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davis, L.C., 2018. "Dynamics of a long platoon of cooperative adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 818-834.
    2. Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    3. Davis, L.C., 2020. "Optimal merging into a high-speed lane dedicated to connected autonomous vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    4. Chen, Shuiwang & Hu, Lu & Yao, Zhihong & Zhu, Juanxiu & Zhao, Bin & Jiang, Yangsheng, 2022. "Efficient and environmentally friendly operation of intermittent dedicated lanes for connected autonomous vehicles in mixed traffic environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    5. Wang, Jian & Zhou, Anye & Liu, Zhiyuan & Peeta, Srinivas, 2024. "Robust cooperative control strategy for a platoon of connected and autonomous vehicles against sensor errors and control errors simultaneously in a real-world driving environment," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    6. Biyao Wang & Yi Han & Siyu Wang & Di Tian & Mengjiao Cai & Ming Liu & Lujia Wang, 2022. "A Review of Intelligent Connected Vehicle Cooperative Driving Development," Mathematics, MDPI, vol. 10(19), pages 1-31, October.
    7. Qiao, Yanfeng & Xue, Yu & Cen, Bingling & Zhang, Kun & Chen, Dong & Pan, Wei, 2024. "Study on particulate emission in two-lane mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    8. Lykov, A.A. & Malyshev, V.A. & Melikian, M.V., 2017. "Phase diagram for one-way traffic flow with local control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 849-866.
    9. Quan Yu & Linlong Lei & Yuqi Bao & Li Wang, 2022. "Research on Safety and Traffic Efficiency of Mixed Traffic Flows in the Converging Section of a Super-Freeway Ramp," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    10. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    11. Wang, Jian & Lu, Lili & Peeta, Srinivas, 2022. "Real-time deployable and robust cooperative control strategy for a platoon of connected and autonomous vehicles by factoring uncertain vehicle dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 88-118.
    12. Chandle Chae & Youngho Kim, 2023. "Investigation of Following Vehicles’ Driving Patterns Using Spectral Analysis Techniques," Sustainability, MDPI, vol. 15(13), pages 1-15, July.
    13. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    14. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    15. Yao, Zhihong & Xu, Taorang & Jiang, Yangsheng & Hu, Rong, 2021. "Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    16. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    17. Fu, Chuanyun & Lu, Zhaoyou & Ding, Naikan & Bai, Wei, 2024. "Distance headway-based safety evaluation of emerging mixed traffic flow under snowy weather," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    18. Yang, Haifei & Zhao, Enze & Zhao, Yi & Li, Yishun, 2024. "Evaluating and enhancing the safety performance of automated longitudinal control at on-ramp merging bottleneck: A simulation study in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    19. Mori, Kentaro & Miwa, Tomio & Abe, Ryosuke & Morikawa, Takayuki, 2022. "Equilibrium analysis of trip demand for autonomous taxi services in Nagoya, Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 476-498.
    20. Nikolaos Gavanas & Konstantina Anastasiadou & Eftihia Nathanail & Socrates Basbas, 2024. "Transport Policy Pathways for Autonomous Road Vehicles to Promote Sustainable Urban Development in the European Union: A Multicriteria Analysis," Land, MDPI, vol. 13(11), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:575:y:2021:i:c:s0378437121003289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.