IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v562y2021ics0378437120306932.html
   My bibliography  Save this article

Effect of autonomous driving on traffic breakdown in mixed traffic flow: A comparison of classical ACC with three-traffic-phase-ACC (TPACC)

Author

Listed:
  • Kerner, Boris S.

Abstract

In this paper, an analysis of the effect of autonomous driving vehicles on traffic breakdown in mixed traffic flow consisting of randomly distributed human driving and autonomous driving vehicles is made. Autonomous vehicles based on classical (standard) adaptive cruise control (ACC) in a vehicle and on an ACC in the framework of three-phase traffic theory (TPACC – Three-traffic-Phase ACC) introduced recently [Phys. Rev. E 97 (2018) 042303] are considered. Due to the particular importance of characteristics of traffic breakdown (transition from free traffic flow to congested traffic) for almost all approaches to traffic control and management in traffic networks, the basis of this paper is a study of the effect of autonomous vehicles on the probability of traffic breakdown and on stochastic highway capacity in mixed traffic flow. We show that within a wide range of dynamic parameters of classical ACC, the ACC-vehicles can deteriorate the traffic system considerably while initiating traffic breakdown and reducing highway capacity at a bottleneck. Contrarily, in the same range of parameters of dynamic rules of TPACC, the TPACC-vehicles either do not effect on traffic characteristics or sometimes can even improve them. To understand physical reasons for the effect of classical ACC- and TPACC-vehicles on traffic breakdown, we introduce a model of ACC that can be considered a combination of dynamic features of classical ACC and TPACC. With the use of this model, we find how the amplitude of a local speed disturbance caused by the ACC in a vicinity of a bottleneck and the probability of traffic breakdown depends on the dynamic parameters of the ACC. To emphasize that the deterioration of the characteristics of mixed traffic flow through classical ACC-vehicles is not associated with a well-known effect of string instability of platoons of autonomous vehicles, we limit by a consideration of only such classical ACC-vehicles whose platoon satisfies condition for string stability.

Suggested Citation

  • Kerner, Boris S., 2021. "Effect of autonomous driving on traffic breakdown in mixed traffic flow: A comparison of classical ACC with three-traffic-phase-ACC (TPACC)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
  • Handle: RePEc:eee:phsmap:v:562:y:2021:i:c:s0378437120306932
    DOI: 10.1016/j.physa.2020.125315
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120306932
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lily Elefteriadou, 2014. "An Introduction to Traffic Flow Theory," Springer Optimization and Its Applications, Springer, edition 127, number 978-1-4614-8435-6, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing, Dian & Yao, Enjian & Chen, Rongsheng, 2023. "Moving characteristics analysis of mixed traffic flow of CAVs and HVs around accident zones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    2. Yang, Haifei & Zhao, Enze & Zhao, Yi & Li, Yishun, 2024. "Evaluating and enhancing the safety performance of automated longitudinal control at on-ramp merging bottleneck: A simulation study in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    3. Qiao, Yanfeng & Xue, Yu & Cen, Bingling & Zhang, Kun & Chen, Dong & Pan, Wei, 2024. "Study on particulate emission in two-lane mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    4. Liu, Huaqing & Jiang, Rui, 2021. "Improving comfort level in traffic flow of CACC vehicles at lane drop on two-lane highways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    5. Lyu, Zelin & Hu, Xiaojian & Zhang, Fang & Liu, Tenghui & Cui, Zhiwei, 2022. "Heterogeneous traffic flow characteristics on the highway with a climbing lane under different truck percentages: The framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerner, Boris S., 2016. "Failure of classical traffic flow theories: Stochastic highway capacity and automatic driving," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 700-747.
    2. Kerner, Boris S. & Koller, Micha & Klenov, Sergey L. & Rehborn, Hubert & Leibel, Michael, 2015. "The physics of empirical nuclei for spontaneous traffic breakdown in free flow at highway bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 365-397.
    3. Nicola Roveri & Antonio Carcaterra & Leonardo Molinari & Gianluca Pepe, 2020. "Safe and Secure Control of Swarms of Vehicles by Small-World Theory," Energies, MDPI, vol. 13(5), pages 1-28, February.
    4. Liu, Zhiyong & Li, Ruimin & Wang, Xiaokun(Cara) & Shang, Pan, 2018. "Effects of vehicle restriction policies: Analysis using license plate recognition data in Langfang, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 89-103.
    5. Marek Drliciak & Michal Cingel & Jan Celko & Zuzana Panikova, 2024. "Research on Vehicle Congestion Group Identification for Evaluation of Traffic Flow Parameters," Sustainability, MDPI, vol. 16(5), pages 1-16, February.
    6. Veronika Harantová & Ambróz Hájnik & Alica Kalašová, 2020. "Comparison of the Flow Rate and Speed of Vehicles on a Representative Road Section before and after the Implementation of Measures in Connection with COVID-19," Sustainability, MDPI, vol. 12(17), pages 1-17, September.
    7. Niaz Mahmud Zafri & Sadia Afroj & Mohammad Ashraf Ali & Md Musleh Uddin Hasan & Md Hamidur Rahman, 2021. "Effectiveness of containment strategies and local cognition to control vehicular traffic volume in Dhaka, Bangladesh during COVID-19 pandemic: Use of Google Map based real-time traffic data," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-16, May.
    8. Osama ElSahly & Akmal Abdelfatah, 2022. "A Systematic Review of Traffic Incident Detection Algorithms," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    9. Boris S. Kerner, 2016. "The maximization of the network throughput ensuring free flow conditions in traffic and transportation networks: Breakdown minimization (BM) principle versus Wardrop’s equilibria," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(9), pages 1-17, September.
    10. Veronika Harantová & Alica Kalašová & Simona Kubíková, 2021. "Use of Traffic Planning Software Outputs When a New Highway Section Is Put into Operation," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    11. Hu, Xiaojian & Qiao, Longqi & Hao, Xiatong & Lin, Chenxi & Liu, Tenghui, 2022. "Research on the impact of entry points on urban arterial roads in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    12. Shao, Wei & Fan, Zejun & Chen, Chia-Ju & Zhang, Zhaofeng & Ma, Jiaqi PhD & Zhang, Junshan PhD, 2024. "Impact of Sensing Errors on Headway Design: From α-Fair Group Safety to Traffic Throughput," Institute of Transportation Studies, Working Paper Series qt4k87b3sk, Institute of Transportation Studies, UC Davis.
    13. Kerner, Boris S., 2017. "Breakdown minimization principle versus Wardrop’s equilibria for dynamic traffic assignment and control in traffic and transportation networks: A critical mini-review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 626-662.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:562:y:2021:i:c:s0378437120306932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.