IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v567y2021ics0378437120309730.html
   My bibliography  Save this article

Empirical findings on infrastructure efficiency at a bicycle T-junction

Author

Listed:
  • Gavriilidou, A.
  • Daamen, W.
  • Yuan, Y.
  • van Nes, N.
  • Hoogendoorn, S.P.

Abstract

In the pursuit of promoting cycling and providing better cycling infrastructure, its design is of great importance. One of the critical locations in a network are intersections, and specifically T-junctions, due to the inverted perception of priority. In this paper, we investigate the behaviour at T-junctions dedicated to cyclists and the effect on bicycle flow efficiency resulting from the introduction of lane markings that advise through cyclists to shift to the left so that merging cyclists can occupy the space on the right hand side of the cycle path. A comprehensive framework is proposed for the assessment of the T-junction efficiency. Empirical trajectory data from a large-scale cycling experiment are used for the analyses. The findings suggest that cyclist heterogeneity can be even more influential on the efficiency than the infrastructure design. Moreover, a form of self-organisation is observed, as through cyclists are willing to move to the left and allow merging cyclists to fit in the cycle path without the provision of any instructions. This means that the lane marking is both redundant and not improving the efficiency of the T-junction.

Suggested Citation

  • Gavriilidou, A. & Daamen, W. & Yuan, Y. & van Nes, N. & Hoogendoorn, S.P., 2021. "Empirical findings on infrastructure efficiency at a bicycle T-junction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
  • Handle: RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309730
    DOI: 10.1016/j.physa.2020.125675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120309730
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elliot Fishman & Christopher Cherry, 2016. "E-bikes in the Mainstream: Reviewing a Decade of Research," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 72-91, January.
    2. Serge P. Hoogendoorn & W. Daamen, 2005. "Pedestrian Behavior at Bottlenecks," Transportation Science, INFORMS, vol. 39(2), pages 147-159, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Lin & Luo, Yangqi & Feng, Yujing & Li, Tao & Fu, Zhijian, 2022. "Experimental investigation on pedestrian–bicycle mixed merging flow in T-junction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziwen Ling & Christopher R. Cherry & John H. MacArthur & Jonathan X. Weinert, 2017. "Differences of Cycling Experiences and Perceptions between E-Bike and Bicycle Users in the United States," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    2. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    3. Ton, Danique & Duives, Dorine, 2021. "Understanding long-term changes in commuter mode use of a pilot featuring free e-bike trials," Transport Policy, Elsevier, vol. 105(C), pages 134-144.
    4. Dan Zhou & Mengying Chang & Guobin Gu & Xin Sun & Huizhi Xu & Wenhan Wang & Tao Wang, 2022. "Analysis of Risky Driving Behavior of Urban Electric Bicycle Drivers for Improving Safety," Sustainability, MDPI, vol. 14(3), pages 1-19, January.
    5. Cao, Shuchao & Lian, Liping & Chen, Mingyi & Yao, Ming & Song, Weiguo & Fang, Zhiming, 2018. "Investigation of difference of fundamental diagrams in pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 661-670.
    6. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
    7. Zeng, Guang & Cao, Shuchao & Liu, Chi & Song, Weiguo, 2018. "Experimental and modeling study on relation of pedestrian step length and frequency under different headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 237-248.
    8. Li, Hongwei & Zhong, Xin & Zhang, Wenbo & Li, Sulan & Xing, Yingying, 2020. "An algorithm for e-bike equivalents at signalized intersections based on traffic conflict events number," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 78-95.
    9. Zhang, Ziru & Krishnakumari, Panchamy & Schulte, Frederik & van Oort, Niels, 2023. "Improving the service of E-bike sharing by demand pattern analysis: A data-driven approach," Research in Transportation Economics, Elsevier, vol. 101(C).
    10. Hu, Yanghui & Zhang, Jun & Song, Weiguo, 2019. "Experimental study on the movement strategies of individuals in multidirectional flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    11. Sun, Shan & Guo, Liang & Yang, Shuo & Cao, Jason, 2024. "Exploring the contributions of Ebike ownership, transit access, and the built environment to car ownership in a developing city," Journal of Transport Geography, Elsevier, vol. 116(C).
    12. Wafa Elias & Victoria Gitelman, 2018. "Youngsters’ Opinions and Attitudes toward the Use of Electric Bicycles in Israel," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    13. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
    14. Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
    15. Fang, Zhi-Ming & Song, Wei-Guo & Liu, Xuan & Lv, Wei & Ma, Jian & Xiao, Xia, 2012. "A continuous distance model (CDM) for the single-file pedestrian movement considering step frequency and length," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 307-316.
    16. Milad Haghani & Majid Sarvi & Zahra Shahhoseini & Maik Boltes, 2016. "How Simple Hypothetical-Choice Experiments Can Be Utilized to Learn Humans’ Navigational Escape Decisions in Emergencies," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-24, November.
    17. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    18. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
    19. Banerjee, Arunabha & Das, Sanhita & Maurya, Akhilesh Kumar, 2024. "Behavioural characteristics influencing walking speed of pedestrians over elevated facilities: A case study of India," Transport Policy, Elsevier, vol. 147(C), pages 169-182.
    20. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.