IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v105y2021icp134-144.html
   My bibliography  Save this article

Understanding long-term changes in commuter mode use of a pilot featuring free e-bike trials

Author

Listed:
  • Ton, Danique
  • Duives, Dorine

Abstract

Globally, the need for more sustainable modes of transport is rising. One of the main contenders of the car is the electrical bike (e-bike). To promote the use of e-bikes, pilots are being organised worldwide (e.g. in the USA, Norway, and the Netherlands). Studies have shown that providing a free e-bike to people for a limited period of time changes their mode choice behaviour during the pilot period. Only few studies have also investigated the long-term effects of these free e-bike trial periods, which show increase in e-bike use in general. However, these studies have failed to investigate why some participants of the trials change behaviour on the long-term, whereas others continued their former behaviour. This study aims to bridge this gap. A pilot with e-bikes was organised at Delft University of Technology, The Netherlands, with the goal of reducing car use for commuter trips towards the university. Data was collected at various moments during and after the trial period to evaluate the long-term changes in commuting behaviour and to identify potential reasons for these changes. A total of 82 participants are included in this study. Overall, car use for commuting decreased from 88% before the pilot to 63% three months after the pilot. E-bike use went up from 2% to 18% in the same time period. A binary logistic regression model shows that the most important variables to explain the decrease in car use are 1) purchase of an e-bike, 2) the participant's perception regarding e-bike safety, and 3) the aim of the participant to use the pilot to change their current behaviour. Besides that, the most important predictor of increase in e-bike use is the purchase of an e-bike. Furthermore, participants identify the investment costs of an e-bike as the strongest reason for not purchasing an e-bike and, thus, not changing their commuting behaviour. Future pilot programs could consider the potential of incrementally purchasing an e-bike over a longer period of time, instead of at once, to increase e-bike adoption rate.

Suggested Citation

  • Ton, Danique & Duives, Dorine, 2021. "Understanding long-term changes in commuter mode use of a pilot featuring free e-bike trials," Transport Policy, Elsevier, vol. 105(C), pages 134-144.
  • Handle: RePEc:eee:trapol:v:105:y:2021:i:c:p:134-144
    DOI: 10.1016/j.tranpol.2021.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X2100072X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2021.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jones, Tim & Harms, Lucas & Heinen, Eva, 2016. "Motives, perceptions and experiences of electric bicycle owners and implications for health, wellbeing and mobility," Journal of Transport Geography, Elsevier, vol. 53(C), pages 41-49.
    2. Ton, Danique & Bekhor, Shlomo & Cats, Oded & Duives, Dorine C. & Hoogendoorn-Lanser, Sascha & Hoogendoorn, Serge P., 2020. "The experienced mode choice set and its determinants: Commuting trips in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 744-758.
    3. Cherry, Christopher R. & Yang, Hongtai & Jones, Luke R. & He, Min, 2016. "Dynamics of electric bike ownership and use in Kunming, China," Transport Policy, Elsevier, vol. 45(C), pages 127-135.
    4. Cherry, Christopher & Cervero, Robert, 2007. "Use characteristics and mode choice behavior of electric bike users in China," Transport Policy, Elsevier, vol. 14(3), pages 247-257, May.
    5. Cairns, S. & Behrendt, F. & Raffo, D. & Beaumont, C. & Kiefer, C., 2017. "Electrically-assisted bikes: Potential impacts on travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 327-342.
    6. de Haas, M.C. & Scheepers, C.E. & Harms, L.W.J. & Kroesen, M., 2018. "Travel pattern transitions: Applying latent transition analysis within the mobility biographies framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 140-151.
    7. Elliot Fishman & Christopher Cherry, 2016. "E-bikes in the Mainstream: Reviewing a Decade of Research," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 72-91, January.
    8. Heinen, Eva & Chatterjee, Kiron, 2015. "The same mode again? An exploration of mode choice variability in Great Britain using the National Travel Survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 266-282.
    9. Plazier, Paul A. & Weitkamp, Gerd & van den Berg, Agnes E., 2017. "“Cycling was never so easy!” An analysis of e-bike commuters' motives, travel behaviour and experiences using GPS-tracking and interviews," Journal of Transport Geography, Elsevier, vol. 65(C), pages 25-34.
    10. Ton, Danique & Duives, Dorine C. & Cats, Oded & Hoogendoorn-Lanser, Sascha & Hoogendoorn, Serge P., 2019. "Cycling or walking? Determinants of mode choice in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 123(C), pages 7-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nosratzadeh, Hossein & Bhowmick, Debjit & Carmona, Ana Belén Ríos & Thompson, Jason & Thai, Thao & Pearson, Lauren & Beck, Ben, 2024. "A scoping review of the design and characteristics of e-bike financial incentives," OSF Preprints 5xgch, Center for Open Science.
    2. Michał Adam Kwiatkowski & Elżbieta Grzelak-Kostulska & Jadwiga Biegańska, 2021. "Could It Be a Bike for Everyone? The Electric Bicycle in Poland," Energies, MDPI, vol. 14(16), pages 1-19, August.
    3. Jenkins, Michael & Lustosa, Lucio & Chia, Victoria & Wildish, Sarah & Tan, Maria & Hoornweg, Daniel & Lloyd, Meghann & Dogra, Shilpa, 2022. "What do we know about pedal assist E-bikes? A scoping review to inform future directions," Transport Policy, Elsevier, vol. 128(C), pages 25-37.
    4. Ton, Danique & Arendsen, Koen & de Bruyn, Menno & Severens, Valerie & van Hagen, Mark & van Oort, Niels & Duives, Dorine, 2022. "Teleworking during COVID-19 in the Netherlands: Understanding behaviour, attitudes, and future intentions of train travellers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 55-73.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    2. Ziwen Ling & Christopher R. Cherry & John H. MacArthur & Jonathan X. Weinert, 2017. "Differences of Cycling Experiences and Perceptions between E-Bike and Bicycle Users in the United States," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    3. Li, Qiumeng & Fuerst, Franz & Luca, Davide, 2023. "Do shared E-bikes reduce urban carbon emissions?," Journal of Transport Geography, Elsevier, vol. 112(C).
    4. Timmer, Sebastian & Merfeld, Katrin & Henkel, Sven, 2023. "Exploring motivations for multimodal commuting: A hierarchical means-end chain analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    5. Hallberg, Martin & Rasmussen, Thomas Kjær & Rich, Jeppe, 2021. "Modelling the impact of cycle superhighways and electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 397-418.
    6. Nematchoua, ModesteKameni & Deuse, Caroline & Cools, Mario & Reiter, Sigrid, 2020. "Evaluation of the potential of classic and electric bicycle commuting as an impetus for the transition towards environmentally sustainable cities: A case study of the university campuses in Liege, Bel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Genikomsakis, Konstantinos N. & Galatoulas, Nikolaos-Fivos & Ioakimidis, Christos S., 2021. "Towards the development of a hotel-based e-bike rental service: Results from a stated preference survey and techno-economic analysis," Energy, Elsevier, vol. 215(PA).
    8. de Kruijf, Joost & van der Waerden, Peter & Feng, Tao & Böcker, Lars & van Lierop, Dea & Ettema, Dick & Dijst, Martin, 2021. "Integrated weather effects on e-cycling in daily commuting: A longitudinal evaluation of weather effects on e-cycling in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 305-315.
    9. Sun, Shan & Guo, Liang & Yang, Shuo & Cao, Jason, 2024. "Exploring the contributions of Ebike ownership, transit access, and the built environment to car ownership in a developing city," Journal of Transport Geography, Elsevier, vol. 116(C).
    10. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).
    11. Kaplan, Sigal & Wrzesinska, Dagmara K. & Prato, Carlo G., 2018. "The role of human needs in the intention to use conventional and electric bicycle sharing in a driving-oriented country," Transport Policy, Elsevier, vol. 71(C), pages 138-146.
    12. Mathijs Haas & Maarten Kroesen & Caspar Chorus & Sascha Hoogendoorn-Lanser & Serge Hoogendoorn, 2022. "E-bike user groups and substitution effects: evidence from longitudinal travel data in the Netherlands," Transportation, Springer, vol. 49(3), pages 815-840, June.
    13. Tang, Tie-Qiao & Luo, Xiao-Feng & Zhang, Jian & Chen, Liang, 2018. "Modeling electric bicycle’s lane-changing and retrograde behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1377-1386.
    14. Ugo N. Castañon & Paulo J. G. Ribeiro, 2021. "Bikeability and Emerging Phenomena in Cycling: Exploratory Analysis and Review," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    15. Ou, Hui & Tang, Tie-Qiao & Rui, Ying-Xu & Zhou, Jie-Ming, 2018. "Electric bicycle management and control at a signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1000-1008.
    16. Philips, Ian & Anable, Jillian & Chatterton, Tim, 2022. "E-bikes and their capability to reduce car CO2 emissions," Transport Policy, Elsevier, vol. 116(C), pages 11-23.
    17. Jenkins, Michael & Lustosa, Lucio & Chia, Victoria & Wildish, Sarah & Tan, Maria & Hoornweg, Daniel & Lloyd, Meghann & Dogra, Shilpa, 2022. "What do we know about pedal assist E-bikes? A scoping review to inform future directions," Transport Policy, Elsevier, vol. 128(C), pages 25-37.
    18. Ou, Hui & Tang, Tie-Qiao & Rui, Ying-Xu & Zhou, Jie-Ming, 2018. "Modeling electric bicycle’s abnormal behavior at a signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 218-231.
    19. Zhiwei Chen & Yucong Hu & Jutint Li & Xing Wu, 2020. "Optimal Deployment of Electric Bicycle Sharing Stations: Model Formulation and Solution Technique," Networks and Spatial Economics, Springer, vol. 20(1), pages 99-136, March.
    20. Synek, Stefan & Koenigstorfer, Joerg, 2018. "Exploring adoption determinants of tax-subsidized company-leasing bicycles from the perspective of German employers and employees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 238-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:105:y:2021:i:c:p:134-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.