IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v534y2019ics0378437119311847.html
   My bibliography  Save this article

Experimental study on the movement strategies of individuals in multidirectional flows

Author

Listed:
  • Hu, Yanghui
  • Zhang, Jun
  • Song, Weiguo

Abstract

Multidirectional flows are common phenomena in reality but have been little investigated before. To investigate pedestrian behaviors and movement strategies in multidirectional flows, a series of experiments were carried out under different densities and typical pedestrian behaviors like detour, acceleration, following, etc. were observed. A linear relation between the length of walk path and the number of pedestrians was obtained. Three strategies were classified to describe pedestrian movement: straight (least effort) strategy, straight to detour (non-least strategy) strategy and detour (non-least strategy) strategy. From the experiment, more than 72% of pedestrians selected the straight strategy to reach their destinations. 8% – 17% pedestrians changed their initial straight strategy to detour strategy, which is related to the waiting time and the flow rate in the central area. Three strategies were compared with movement time and the length of walk path. These findings can be used to provide basics for simulation rules and parameters in multidirectional flows simulations and make evacuation plans according to different focuses in normal and emergency conditions.

Suggested Citation

  • Hu, Yanghui & Zhang, Jun & Song, Weiguo, 2019. "Experimental study on the movement strategies of individuals in multidirectional flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  • Handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119311847
    DOI: 10.1016/j.physa.2019.122046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119311847
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Armin Seyfried & Oliver Passon & Bernhard Steffen & Maik Boltes & Tobias Rupprecht & Wolfram Klingsch, 2009. "New Insights into Pedestrian Flow Through Bottlenecks," Transportation Science, INFORMS, vol. 43(3), pages 395-406, August.
    2. Huang, Shenshi & Zhang, Teng & Lo, Siuming & Lu, Shouxiang & Li, Changhai, 2018. "Experimental study of individual and single-file pedestrian movement in narrow seat aisle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1023-1033.
    3. Ujjal Chattaraj & Armin Seyfried & Partha Chakroborty, 2009. "Comparison Of Pedestrian Fundamental Diagram Across Cultures," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-405.
    4. Zeng, Guang & Cao, Shuchao & Liu, Chi & Song, Weiguo, 2018. "Experimental and modeling study on relation of pedestrian step length and frequency under different headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 237-248.
    5. Cao, Shuchao & Lian, Liping & Chen, Mingyi & Yao, Ming & Song, Weiguo & Fang, Zhiming, 2018. "Investigation of difference of fundamental diagrams in pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 661-670.
    6. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    7. Dirk Helbing & Péter Molnár & Illés J Farkas & Kai Bolay, 2001. "Self-Organizing Pedestrian Movement," Environment and Planning B, , vol. 28(3), pages 361-383, June.
    8. Isobe, Motoshige & Adachi, Taku & Nagatani, Takashi, 2004. "Experiment and simulation of pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 638-650.
    9. Zhang, J. & Seyfried, A., 2014. "Comparison of intersecting pedestrian flows based on experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 316-325.
    10. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
    11. Liu, Xuan & Song, Weiguo & Zhang, Jun, 2009. "Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2717-2726.
    12. Alexandra Willis & Nathalia Gjersoe & Catriona Havard & Jon Kerridge & Robert Kukla, 2004. "Human Movement Behaviour in Urban Spaces: Implications for the Design and Modelling of Effective Pedestrian Environments," Environment and Planning B, , vol. 31(6), pages 805-828, December.
    13. Serge P. Hoogendoorn & W. Daamen, 2005. "Pedestrian Behavior at Bottlenecks," Transportation Science, INFORMS, vol. 39(2), pages 147-159, May.
    14. William Lam & Jodie Lee & C. Cheung, 2002. "A study of the bi-directional pedestrian flow characteristics at Hong Kong signalized crosswalk facilities," Transportation, Springer, vol. 29(2), pages 169-192, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Libi & Zhang, Ying & Qin, Huigui & Shi, Qingxin & Chen, Qiyi & Chen, Yunqian & Shi, Yongqian, 2023. "A modified social force model for studying nonlinear dynamics of pedestrian-e-bike mixed flow at a signalized crosswalk," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Shi, Zhigang & Zhang, Jun & Shang, Zhigang & Fan, Minghao & Song, Weiguo, 2022. "The effect of obstacle layouts on regulating luggage-laden pedestrian flow through bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    3. Ren, Xiangxia & Zhang, Jun & Song, Weiguo & Cao, Shuchao, 2021. "Mechanisms of passing through short exits for the elderly and young adults," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 195-213.
    4. Ren, Xiangxia & Hu, Yanghui & Li, Hongliu & Zhang, Jun & Song, Weiguo & Xu, Han, 2022. "Simulation of building evacuation with different ratios of the elderly considering the influence of obstacle position," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
    2. Zeng, Tian & Wei, Yidong & Hu, Zuoan & Ma, Yi, 2023. "Comparison study in single-file pedestrian flow dynamics: Foot motion perspective versus head motion perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    3. Cao, Shuchao & Lian, Liping & Chen, Mingyi & Yao, Ming & Song, Weiguo & Fang, Zhiming, 2018. "Investigation of difference of fundamental diagrams in pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 661-670.
    4. Ding, Ning & Chen, Tao & Zhu, Yu & Lu, Yang, 2021. "State-of-the-art high-rise building emergency evacuation behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    5. Bosina, Ernst & Weidmann, Ulrich, 2017. "Estimating pedestrian speed using aggregated literature data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 1-29.
    6. Wang, Weili & Zhang, Jingjing & Li, Haicheng & Xie, Qimiao, 2020. "Experimental study on unidirectional pedestrian flows in a corridor with a fixed obstacle and a temporary obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    7. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
    8. Zhang, Dawei & Zhu, Haitao & Hostikka, Simo & Qiu, Shi, 2019. "Pedestrian dynamics in a heterogeneous bidirectional flow: Overtaking behaviour and lane formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 72-84.
    9. Wei, Yidong & Hu, Zuoan & Zeng, Tian & Xie, Wei & Ma, Yi, 2023. "Influence of walkway slope on single-file pedestrian flow dynamics: Results from an experimental study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    10. Zeng, Guang & Cao, Shuchao & Liu, Chi & Song, Weiguo, 2018. "Experimental and modeling study on relation of pedestrian step length and frequency under different headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 237-248.
    11. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    12. Fu, Zhijian & Li, Tao & Deng, Qiangqiang & Schadschneider, Andreas & Luo, Lin & Ma, Jian, 2021. "Effect of turning curvature on the single-file dynamics of pedestrian flow: An experimental study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    13. Tang, Tie-Qiao & Zhang, Bo-Tao & Zhang, Jian & Wang, Tao, 2019. "Statistical analysis and modeling of pedestrian flow in university canteen during peak period," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 29-40.
    14. Tan, Bangkun & Xuan, Chenrui & Xie, Wei & Shi, Meng & Ma, Yi, 2024. "Dynamic characteristics of the sideways movement of pedestrians: An experimental study based on single-file experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    15. Huang, Shenshi & Zhang, Teng & Lo, Siuming & Lu, Shouxiang & Li, Changhai, 2018. "Experimental study of individual and single-file pedestrian movement in narrow seat aisle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1023-1033.
    16. Liao, Weichen & Tordeux, Antoine & Seyfried, Armin & Chraibi, Mohcine & Drzycimski, Kevin & Zheng, Xiaoping & Zhao, Ying, 2016. "Measuring the steady state of pedestrian flow in bottleneck experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 248-261.
    17. Zeng, Guang & Ye, Rui & Zhang, Jun & Cao, Shuchao & Song, Weiguo, 2023. "Macroscopic and microscopic movement properties of the fast walking pedestrian flow with single-file experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    18. Liu, Xuan & Song, Weiguo & Zhang, Jun, 2009. "Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2717-2726.
    19. Wang, Peng & Cao, Shuchao & Yao, Ming, 2019. "Fundamental diagrams for pedestrian traffic flow in controlled experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 266-277.
    20. Ning Ding, 2020. "The effectiveness of evacuation signs in buildings based on eye tracking experiment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1201-1218, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119311847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.