IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v553y2020ics037843712030073x.html
   My bibliography  Save this article

Hopf bifurcation analysis of a tumor virotherapy model with two time delays

Author

Listed:
  • Li, Hui-zhong
  • Liu, Xiang-dong
  • Yan, Rui
  • Liu, Cheng

Abstract

Oncolytic virotherapy is gradually applied in clinical trial, which provides a new potential approach to cancer treatment. Tumor volume doubling time (TVDT) is so short that the infection delay caused by oncolytic virus should be considered in the modeling of virotherapy. A DDE model is constructed by adding two infection delays based on an ODE model that describes the dynamics of cancer cells, tumor cells, immune cells and oncolytic viruses. According to the different values of two delays, three cases of the model are discussed to investigate the stability and bifurcation of both the virus-free equilibrium and the positive equilibrium. Finally, some numerical simulations are performed to verify the obtained theoretical conclusions based on clinical trial data.

Suggested Citation

  • Li, Hui-zhong & Liu, Xiang-dong & Yan, Rui & Liu, Cheng, 2020. "Hopf bifurcation analysis of a tumor virotherapy model with two time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
  • Handle: RePEc:eee:phsmap:v:553:y:2020:i:c:s037843712030073x
    DOI: 10.1016/j.physa.2020.124266
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712030073X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Kwang Su & Kim, Sangil & Jung, Il Hyo, 2018. "Hopf bifurcation analysis and optimal control of Treatment in a delayed oncolytic virus dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 149(C), pages 1-16.
    2. Wang, Xia & Song, Xinyu & Tang, Sanyi & Rong, Libin, 2016. "Analysis of HIV models with multiple target cell populations and general nonlinear rates of viral infection and cell death," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 124(C), pages 87-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jingnan & Shi, Hongbin & Xu, Li & Zang, Lu, 2022. "Hopf bifurcation and chaos of tumor-Lymphatic model with two time delays," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Amine, Saida & Hajri, Youssra & Allali, Karam, 2022. "A delayed fractional-order tumor virotherapy model: Stability and Hopf bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed M. Elaiw & Taofeek O. Alade & Saud M. Alsulami, 2018. "Global Stability of Within-Host Virus Dynamics Models with Multitarget Cells," Mathematics, MDPI, vol. 6(7), pages 1-19, July.
    2. Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Zhang, Minsong & Ding, Ling & Cao, Jinde & Alsaedi, Ahmed, 2020. "Dynamic optimal control of enhancing feedback treatment for a delayed fractional order predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    3. Kumar, Pushpendra & Erturk, Vedat Suat & Yusuf, Abdullahi & Kumar, Sunil, 2021. "Fractional time-delay mathematical modeling of Oncolytic Virotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Amine, Saida & Hajri, Youssra & Allali, Karam, 2022. "A delayed fractional-order tumor virotherapy model: Stability and Hopf bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. Elaiw, A.M. & Hobiny, A.D. & Al Agha, A.D., 2020. "Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    6. Hmarrass, Hanane & Qesmi, Redouane, 2024. "Stability and backward bifurcation for an HIV model with macrophages and CD4+T cells with latent reservoirs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 370-395.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:553:y:2020:i:c:s037843712030073x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.