IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v367y2020ics0096300319307507.html
   My bibliography  Save this article

Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response

Author

Listed:
  • Elaiw, A.M.
  • Hobiny, A.D.
  • Al Agha, A.D.

Abstract

Oncolytic virotherapy is a promising cancer treatment that uses replication-competent viruses to target and kill tumor cells. Oncolytic alphavirus M1 is a naturally occurring virus which showed high selectivity and potent efficacy in human cancers. Our purpose in this paper is to propose and analyze a model of oncolytic M1 virotherapy with spatial effects and anti-tumor immune response. We investigate the non-negativity and boundedness of solutions for the modified model. We calculate all possible equilibrium points and determine the threshold conditions needed for their existence. One of the equilibria represents the success of the treatment, while the others represent a partial success or a complete fail. We study the global stability of the corresponding equilibrium points by constructing suitable Lyapunov functionals. We also provide the instability conditions of the equilibrium points. We perform some numerical simulations in order to verify the effect of the immune response on oncolytic virotherapy. Our results indicate that the immune response may weaken the effectiveness of oncolytic virotherapy and control the tumor.

Suggested Citation

  • Elaiw, A.M. & Hobiny, A.D. & Al Agha, A.D., 2020. "Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response," Applied Mathematics and Computation, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:apmaco:v:367:y:2020:i:c:s0096300319307507
    DOI: 10.1016/j.amc.2019.124758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319307507
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Kwang Su & Kim, Sangil & Jung, Il Hyo, 2018. "Hopf bifurcation analysis and optimal control of Treatment in a delayed oncolytic virus dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 149(C), pages 1-16.
    2. Elaiw, A.M. & Almuallem, N.A., 2015. "Global properties of delayed-HIV dynamics models with differential drug efficacy in cocirculating target cells," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1067-1089.
    3. Elzbieta Ratajczyk & Urszula Ledzewicz & Heinz Schättler, 2018. "Optimal Control for a Mathematical Model of Glioma Treatment with Oncolytic Therapy and TNF- $$\alpha $$ α Inhibitors," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 456-477, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elaiw, A.M. & Alshaikh, M.A., 2020. "Stability preserving NSFD scheme for a general virus dynamics model with antibody and cell-mediated responses," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Elaiw, A.M. & Al Agha, A.D., 2021. "Global dynamics of SARS-CoV-2/cancer model with immune responses," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    3. Ahmed Elaiw & Afnan Al Agha, 2020. "Global Analysis of a Reaction-Diffusion Within-Host Malaria Infection Model with Adaptive Immune Response," Mathematics, MDPI, vol. 8(4), pages 1-32, April.
    4. Mittal, R.C. & Goel, Rohit & Ahlawat, Neha, 2021. "An Efficient Numerical Simulation of a Reaction-Diffusion Malaria Infection Model using B-splines Collocation," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Kumar, Pushpendra & Erturk, Vedat Suat & Yusuf, Abdullahi & Kumar, Sunil, 2021. "Fractional time-delay mathematical modeling of Oncolytic Virotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Younoussi, Majda El & Hajhouji, Zakaria & Hattaf, Khalid & Yousfi, Noura, 2022. "Dynamics of a reaction-diffusion fractional-order model for M1 oncolytic virotherapy with CTL immune response," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elaiw, A.M. & Al Agha, A.D., 2021. "Global dynamics of SARS-CoV-2/cancer model with immune responses," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    2. Kumar, Pushpendra & Erturk, Vedat Suat & Yusuf, Abdullahi & Kumar, Sunil, 2021. "Fractional time-delay mathematical modeling of Oncolytic Virotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Amine, Saida & Hajri, Youssra & Allali, Karam, 2022. "A delayed fractional-order tumor virotherapy model: Stability and Hopf bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Ahmed M. Elaiw & Safiya F. Alshehaiween & Aatef D. Hobiny, 2019. "Global Properties of a Delay-Distributed HIV Dynamics Model Including Impairment of B-Cell Functions," Mathematics, MDPI, vol. 7(9), pages 1-27, September.
    5. Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Zhang, Minsong & Ding, Ling & Cao, Jinde & Alsaedi, Ahmed, 2020. "Dynamic optimal control of enhancing feedback treatment for a delayed fractional order predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    6. Elaiw, Ahmed M. & Alshehaiween, Safiya F. & Hobiny, Aatef D., 2020. "Impact of B-cell impairment on virus dynamics with time delay and two modes of transmission," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Elaiw, Ahmed M. & Al Agha, Afnan D., 2019. "Stability of a general HIV-1 reaction–diffusion model with multiple delays and immune response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    8. Li, Hui-zhong & Liu, Xiang-dong & Yan, Rui & Liu, Cheng, 2020. "Hopf bifurcation analysis of a tumor virotherapy model with two time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    9. Elaiw, Ahmed M. & Alshaikh, Matuka A., 2020. "Global stability of discrete pathogen infection model with humoral immunity and cell-to-cell transmission," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).

    More about this item

    Keywords

    Oncolytic; Virotherapy; M1 virus; Immune response; Diffusion; Global stability;
    All these keywords.

    JEL classification:

    • M1 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:367:y:2020:i:c:s0096300319307507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.