IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v551y2020ics0378437120300480.html
   My bibliography  Save this article

Modeling and stability analysis of mixed traffic with conventional and connected automated vehicles from cyber physical perspective

Author

Listed:
  • Jin, Shuang
  • Sun, Di-Hua
  • Zhao, Min
  • Li, Yang
  • Chen, Jin

Abstract

With the development of automated driving and communication technologies, the connected automated vehicles (CAVs) gradually enter market and become more popular. At the same time, the mixed traffic composed of conventional vehicles and CAVs will gradually become a very common form of traffic. In fact, the driving process of CAV is a typical cyber physical process which couples tightly the cyber factor of traffic information with the physical components of the vehicles. In this paper, we present a mixed traffic model from the perspective of cyber physical fusion, the model focuses on the fact that the CAVs can obtain the information from multiple vehicles ahead and the drivers have a reaction delay in driving process. The stability condition of the proposed model is derived via linear stability analysis. Furthermore, we investigate the fuel consumption and CO2 emission using the model we propose under different penetration rates of CAVs. The results show that the stability of mixed traffic is related to driver’s reaction delay, the penetration rate of CAVs, and the information from multiple vehicles ahead that CAVs can obtain. Numerical simulations are conducted to verify the analytical results. The simulation results demonstrate that the model proposed in this paper can better reflect the real advantages of CAV in mixed traffic, and further show that the model in this paper is more realistic. More specifically, the information obtained from multiple vehicles ahead including conventional vehicle and CAV can improve the stability of mixed traffic and traffic efficiency to a greater extent, and the driver’s reaction delay will destabilize mixed traffic. Besides, when the penetration rate of CAVs is high, the fuel consumption and CO2 emission in mixed traffic can be greatly reduced.

Suggested Citation

  • Jin, Shuang & Sun, Di-Hua & Zhao, Min & Li, Yang & Chen, Jin, 2020. "Modeling and stability analysis of mixed traffic with conventional and connected automated vehicles from cyber physical perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
  • Handle: RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437120300480
    DOI: 10.1016/j.physa.2020.124217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120300480
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Wen-Xing & Zhang, H.M., 2018. "Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 274-285.
    2. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Modeling connected and autonomous vehicles in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 269-277.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Junwei & Qian, Yongsheng & Wang, Wenhai & Xu, Dejie & Li, Haijun, 2023. "The impact of connected automated vehicles and platoons on the traffic safety and stability in complex heterogeneous traffic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    2. Luo, Ruifa & Gu, Qiufan & Xu, Taorang & Hao, Huijun & Yao, Zhihong, 2022. "Analysis of linear internal stability for mixed traffic flow of connected and automated vehicles considering multiple influencing factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    3. Chen, Jianzhong & Liang, Huan & Li, Jing & Xu, Zhaoxin, 2021. "A novel distributed cooperative approach for mixed platoon consisting of connected and automated vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    4. Montanino, Marcello & Monteil, Julien & Punzo, Vincenzo, 2021. "From homogeneous to heterogeneous traffic flows: Lp String stability under uncertain model parameters," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 136-154.
    5. Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    6. Li, Huamin & Jin, Shiyu, 2024. "Intelligent vehicle car-following model based on cyber physical system and its simulation under mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    7. Wang, Baojie & Li, Wei & Wen, Haosong & Hu, Xiaojian, 2021. "Modeling impacts of driving automation system on mixed traffic flow at off-ramp freeway facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    8. Li, Chao & Zhao, Xiaomei & Xie, Dongfan, 2022. "Steady-state performance and dynamic performance of heterogeneous platoons under a connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    9. Liu, Zhongcheng & Sun, Dihua & Zhao, Min & Jin, Shuang & Zhang, Yicai, 2022. "Pinning control strategy and stability analysis of mixed platoon: A cyber–physical perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    10. Cheng, Rongjun & Lyu, Hao & Zheng, Yaxing & Ge, Hongxia, 2022. "Modeling and stability analysis of cyberattack effects on heterogeneous intelligent traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    11. Chen, Yingda & Kong, Dewen & Sun, Lishan & Zhang, Tong & Song, Yongchang, 2022. "Fundamental diagram and stability analysis for heterogeneous traffic flow considering human-driven vehicle driver’s acceptance of cooperative adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    12. Muhammad Azam & Sitti Asmah Hassan & Othman Che Puan, 2022. "Autonomous Vehicles in Mixed Traffic Conditions—A Bibliometric Analysis," Sustainability, MDPI, vol. 14(17), pages 1-34, August.
    13. Montanino, Marcello & Punzo, Vincenzo, 2021. "On string stability of a mixed and heterogeneous traffic flow: A unifying modelling framework," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 133-154.
    14. Chen, Yingda & Li, Keping & Zhang, Lun & Chen, Yili & Xiao, Xue, 2024. "Modeling and analysis of mixed traffic flow capacity and stability considering human-driven vehicle drivers' trust attitude towards intelligent connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    15. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    16. Wang, Xinke & Zhang, Jian & Li, Honghai & He, Zhengbing, 2023. "A mixed traffic car-following behavior model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    17. Wu, Yuanyuan & Wang, David Z.W. & Zhu, Feng, 2022. "Influence of CAVs platooning on intersection capacity under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    18. Mohammed Al-Turki & Nedal T. Ratrout & Syed Masiur Rahman & Imran Reza, 2021. "Impacts of Autonomous Vehicles on Traffic Flow Characteristics under Mixed Traffic Environment: Future Perspectives," Sustainability, MDPI, vol. 13(19), pages 1-22, October.
    19. Yao, Zhihong & Gu, Qiufan & Jiang, Yangsheng & Ran, Bin, 2022. "Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    20. Hua, Xuedong & Yu, Weijie & Wang, Wei & Zhao, De, 2023. "Impact of multi-class stochastic cyberattacks on vehicle dynamics and rear-end collision risks for heterogeneous traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qingchao & Cai, Yingfeng & Jiang, Haobin & Lu, Jian & Chen, Long, 2018. "Traffic state prediction using ISOMAP manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 532-541.
    2. Wang, Shutong & Zhu, Wen-Xing, 2022. "Modeling the heterogeneous traffic flow considering mean expected velocity field and effect of two-lane communication under connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Tanimoto, Jun & Futamata, Masanori & Tanaka, Masaki, 2020. "Automated vehicle control systems need to solve social dilemmas to be disseminated," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
    6. Luo, Ruifa & Gu, Qiufan & Xu, Taorang & Hao, Huijun & Yao, Zhihong, 2022. "Analysis of linear internal stability for mixed traffic flow of connected and automated vehicles considering multiple influencing factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    7. Pernestål Brenden , Anna & Kristoffersson , Ida, 2018. "Effects of driverless vehicles: A review of simulations," Working papers in Transport Economics 2018:11, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    8. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    9. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    10. Hossain, Md. Anowar & Tanimoto, Jun, 2022. "A microscopic traffic flow model for sharing information from a vehicle to vehicle by considering system time delay effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    11. Andrea Papu Carrone & Jeppe Rich & Christian Anker Vandet & Kun An, 2021. "Autonomous vehicles in mixed motorway traffic: capacity utilisation, impact and policy implications," Transportation, Springer, vol. 48(6), pages 2907-2938, December.
    12. Zong, Fang & Wang, Meng & Tang, Jinjun & Zeng, Meng, 2022. "Modeling AVs & RVs’ car-following behavior by considering impacts of multiple surrounding vehicles and driving characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    13. Yan, Chunyue & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model by considering the optimal velocity difference and electronic throttle angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    14. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    15. Chang, Xin & Li, Haijian & Rong, Jian & Zhao, Xiaohua & Li, An’ran, 2020. "Analysis on traffic stability and capacity for mixed traffic flow with platoons of intelligent connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    16. Chen, Can & Ge, Hongxia & Cheng, Rongjun, 2019. "Self-stabilizing analysis of an extended car-following model with consideration of expected effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Zhaoming Zhou & Jianbo Yuan & Shengmin Zhou & Qiong Long & Jianrong Cai & Lei Zhang, 2023. "Modeling and Analysis of Driving Behaviour for Heterogeneous Traffic Flow Considering Market Penetration under Capacity Constraints," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    18. Yang, Qiaoli & Shi, Zhongke & Tang, Min-an & Gao, Fengyang & Yu, Shaowei, 2019. "Modeling the permissive-only left-turn queue at signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 315-325.
    19. Guan, Hao & Wang, Hua & Meng, Qiang & Mak, Chin Long, 2023. "Markov chain-based traffic analysis on platooning effect among mixed semi- and fully-autonomous vehicles in a freeway lane," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 176-202.
    20. Zhang, Geng & Yin, Le & Pan, Dong-Bo & Zhang, Yu & Cui, Bo-Yuan & Jiang, Shan, 2020. "Research on multiple vehicles’ continuous self-delayed velocities on traffic flow with vehicle-to-vehicle communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437120300480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.