IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v129y2019icp1-15.html
   My bibliography  Save this article

Heat transfer analysis of generalized Jeffery nanofluid in a rotating frame: Atangana–Balaenu and Caputo–Fabrizio fractional models

Author

Listed:
  • Ali, Farhad
  • Murtaza, Saqib
  • Sheikh, Nadeem Ahmad
  • Khan, Ilyas

Abstract

Time fractional comparative analysis has been examined for generalized Jeffrey nanofluid in a rotatory system under consideration of porous medium and transverse magnetic field of strength B0. The classical model of the governing equations which governs the fluid flow is transformed into two different time fractional models i.e. Caputo–Fabrizio and Atangana–Baleanu. The nanofluid has been formed by uniform dispersing of nano-size solid particles of silver in engine oil which is assumed as base fluid. To get the closed form solution for temperature and velocity distributions, the mathematical tool that is the Laplace transform technique (LTT) has been applied on both CF and AB time fractional model. The impact of corresponding parameters on fluid flow and temperature distribution, plots are drawn and illustrated graphically. The solutions of CF and AB time fractional model are discussed classically by taking fractional parameter α → 1. Moreover, for validation of the present work, present solutions has been reduced to well- known published work. Variation in Nusselt number and skin friction due to relative parameters is computed numerically and shown in tabular form. It is worth noted that the rate of heat transfer of engine oil enhances by 12.37% when the values of volume fraction of silver nanoparticles vary from 0.00 to 0.04, which will ultimately improve the lubricant properties.

Suggested Citation

  • Ali, Farhad & Murtaza, Saqib & Sheikh, Nadeem Ahmad & Khan, Ilyas, 2019. "Heat transfer analysis of generalized Jeffery nanofluid in a rotating frame: Atangana–Balaenu and Caputo–Fabrizio fractional models," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 1-15.
  • Handle: RePEc:eee:chsofr:v:129:y:2019:i:c:p:1-15
    DOI: 10.1016/j.chaos.2019.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919303236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dalir, Nemat & Dehsara, Mohammad & Nourazar, S. Salman, 2015. "Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet," Energy, Elsevier, vol. 79(C), pages 351-362.
    2. Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
    3. Atangana, Abdon, 2016. "On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 948-956.
    4. Tariq Hussain & Sabir Ali Shehzad & Tasawar Hayat & Ahmed Alsaedi & Falleh Al-Solamy & Muhammad Ramzan, 2014. "Radiative Hydromagnetic Flow of Jeffrey Nanofluid by an Exponentially Stretching Sheet," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-9, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puneeth, V. & Manjunatha, S. & Madhukesh, J.K. & Ramesh, G.K., 2021. "Three dimensional mixed convection flow of hybrid casson nanofluid past a non-linear stretching surface: A modified Buongiorno’s model aspects," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Ahmad, Zubair & Ali, Farhad & Khan, Naveed & Khan, Ilyas, 2021. "Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    2. Amiri, Pari & Afshari, Hojjat, 2022. "Common fixed point results for multi-valued mappings in complex-valued double controlled metric spaces and their applications to the existence of solution of fractional integral inclusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    3. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    4. Coronel-Escamilla, A. & Gómez-Aguilar, J.F. & López-López, M.G. & Alvarado-Martínez, V.M. & Guerrero-Ramírez, G.V., 2016. "Triple pendulum model involving fractional derivatives with different kernels," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 248-261.
    5. Fetecau, C. & Zafar, A.A. & Vieru, D. & Awrejcewicz, J., 2020. "Hydromagnetic flow over a moving plate of second grade fluids with time fractional derivatives having non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    6. Hasan, Shatha & El-Ajou, Ahmad & Hadid, Samir & Al-Smadi, Mohammed & Momani, Shaher, 2020. "Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    7. Jahanshahi, S. & Babolian, E. & Torres, D.F.M. & Vahidi, A.R., 2017. "A fractional Gauss–Jacobi quadrature rule for approximating fractional integrals and derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 295-304.
    8. Sun, HongGuang & Hao, Xiaoxiao & Zhang, Yong & Baleanu, Dumitru, 2017. "Relaxation and diffusion models with non-singular kernels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 590-596.
    9. Algahtani, Obaid Jefain Julaighim, 2016. "Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 552-559.
    10. Abdeljawad, Thabet & Baleanu, Dumitru, 2017. "Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 106-110.
    11. Shoaib, Muhammad & Abbasi, Aqsa Zafar & Raja, Muhammad Asif Zahoor & Nisar, Kottakkaran Sooppy, 2022. "A design of predictive computational network for the analysis of fractional epidemical predictor-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    12. Qasem Al-Mdallal & Kashif Ali Abro & Ilyas Khan, 2018. "Analytical Solutions of Fractional Walter’s B Fluid with Applications," Complexity, Hindawi, vol. 2018, pages 1-10, February.
    13. Yu, Xiangnan & Zhang, Yong & Sun, HongGuang & Zheng, Chunmiao, 2018. "Time fractional derivative model with Mittag-Leffler function kernel for describing anomalous diffusion: Analytical solution in bounded-domain and model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 306-312.
    14. Khan, Tahir Ullah & Khan, Muhammad Adil, 2021. "New generalized mean square stochastic fractional operators with applications," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Agarwal, Praveen & Singh, Ram, 2020. "Modelling of transmission dynamics of Nipah virus (Niv): A fractional order Approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    16. Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. Mohammed, Pshtiwan Othman & Kürt, Cemaliye & Abdeljawad, Thabet, 2022. "Bivariate discrete Mittag-Leffler functions with associated discrete fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    18. Mallika Arjunan, M. & Hamiaz, A. & Kavitha, V., 2021. "Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    19. Koca, Ilknur, 2018. "Efficient numerical approach for solving fractional partial differential equations with non-singular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 278-286.
    20. Gómez-Aguilar, J.F., 2017. "Irving–Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 179-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:129:y:2019:i:c:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.