IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v550y2020ics0378437120300261.html
   My bibliography  Save this article

The dynamic relationship between internet attention and stock market liquidity: A thermal optimal path method

Author

Listed:
  • Gao, Yang
  • Zhao, Kun
  • Wang, Chao
  • Liu, Chao

Abstract

Financial theory holds that attention plays a significant role in the information response, and internet attention has been used widely to explore their influence on stock market microstructure. Based on the thermal optimal path method and social network data, this paper constructs two dynamic variables including investor and media attention reflecting the internet attention and examines the lead–lag relationship between the internet attention and market liquidity measures. Furthermore, the sample is further divided into three parts including stationary and fluctuation periods to explore the predictive ability of internet attention effects on Chinese stock market liquidity. The main results reveal that the lead–lag orders between the internet attention and market liquidity are not always positive or negative. In other words, the internet attention does not always dominate the stock market liquidity, and vice versa. Moreover, there are significant differences in the results of lead–lag orders between three different subsample periods. The empirical results confirm that internet attention facilitates forecasting market performance in the Chinese stock market, and supplements the relevant theories of stock market trading and behavioral finance from the perspective of econophysics.

Suggested Citation

  • Gao, Yang & Zhao, Kun & Wang, Chao & Liu, Chao, 2020. "The dynamic relationship between internet attention and stock market liquidity: A thermal optimal path method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
  • Handle: RePEc:eee:phsmap:v:550:y:2020:i:c:s0378437120300261
    DOI: 10.1016/j.physa.2020.124180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120300261
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duarte, Jefferson & Young, Lance, 2009. "Why is PIN priced?," Journal of Financial Economics, Elsevier, vol. 91(2), pages 119-138, February.
    2. Didier Sornette & Wei-Xing Zhou, 2005. "Non-parametric determination of real-time lag structure between two time series: the 'optimal thermal causal path' method," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 577-591.
    3. Gao, Yang & Li, Yunhai & Wang, Yaojun & Wang, Chao & Liu, Chao, 2019. "Asymptotic comparison of three spread estimators based on Roll’s model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 420-432.
    4. Azi Ben-Rephael & Zhi Da & Ryan D. Israelsen, 2017. "It Depends on Where You Search: Institutional Investor Attention and Underreaction to News," The Review of Financial Studies, Society for Financial Studies, vol. 30(9), pages 3009-3047.
    5. Huang, Yuqin & Qiu, Huiyan & Wu, Zhiguo, 2016. "Local bias in investor attention: Evidence from China's Internet stock message boards," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 338-354.
    6. Zhou, Wei-Xing & Sornette, Didier, 2007. "Lead-lag cross-sectional structure and detection of correlated–anticorrelated regime shifts: Application to the volatilities of inflation and economic growth rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 287-296.
    7. repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
    8. Takeda, Fumiko & Wakao, Takumi, 2014. "Google search intensity and its relationship with returns and trading volume of Japanese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 27(C), pages 1-18.
    9. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    10. Zhang, Wei & Shen, Dehua & Zhang, Yongjie & Xiong, Xiong, 2013. "Open source information, investor attention, and asset pricing," Economic Modelling, Elsevier, vol. 33(C), pages 613-619.
    11. Tantaopas, Parkpoom & Padungsaksawasdi, Chaiyuth & Treepongkaruna, Sirimon, 2016. "Attention effect via internet search intensity in Asia-Pacific stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 38(C), pages 107-124.
    12. Easley, David & O'Hara, Maureen & Saar, Gideon, 2001. "How Stock Splits Affect Trading: A Microstructure Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 36(1), pages 25-51, March.
    13. Easley, David, et al, 1996. "Liquidity, Information, and Infrequently Traded Stocks," Journal of Finance, American Finance Association, vol. 51(4), pages 1405-1436, September.
    14. Bijl, Laurens & Kringhaug, Glenn & Molnár, Peter & Sandvik, Eirik, 2016. "Google searches and stock returns," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 150-156.
    15. Binswanger, Mathias, 2000. "Stock market booms and real economic activity: Is this time different?," International Review of Economics & Finance, Elsevier, vol. 9(4), pages 387-415, October.
    16. Ding, Rong & Hou, Wenxuan, 2015. "Retail investor attention and stock liquidity," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 12-26.
    17. Gao, Yang & Wang, Yaojun & Wang, Chao & Liu, Chao, 2018. "Internet attention and information asymmetry: Evidence from Qihoo 360 search data on the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 802-811.
    18. Guo, Kun & Sun, Yi & Qian, Xin, 2017. "Can investor sentiment be used to predict the stock price? Dynamic analysis based on China stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 390-396.
    19. Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
    20. Yang, Li & Zhao, Longfeng & Wang, Chao, 2019. "Portfolio optimization based on empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ziqi & Su, Zhi & Wang, Ke & Zhang, Yongji, 2022. "Corporate environmental information disclosure and stock price crash risk: Evidence from Chinese listed heavily polluting companies," Energy Economics, Elsevier, vol. 112(C).
    2. Chen, Zhang-HangJian & Ren, Fei & Yang, Ming-Yuan & Lu, Feng-Zhi & Li, Sai-Ping, 2023. "Dynamic lead–lag relationship between Chinese carbon emission trading and stock markets under exogenous shocks," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 295-305.
    3. Chen, Zhang-HangJian & Wu, Wang-Long & Li, Sai-Ping & Bao, Kun & Koedijk, Kees G., 2024. "Social media information diffusion and excess stock returns co-movement," International Review of Financial Analysis, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yang & Wang, Yaojun & Wang, Chao & Liu, Chao, 2018. "Internet attention and information asymmetry: Evidence from Qihoo 360 search data on the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 802-811.
    2. Cheng, Feiyang & Wang, Chunfeng & Chiao, Chaoshin & Yao, Shouyu & Fang, Zhenming, 2021. "Retail attention, retail trades, and stock price crash risk," Emerging Markets Review, Elsevier, vol. 49(C).
    3. Chaiyuth Padungsaksawasdi & Sirimon Treepongkaruna & Robert Brooks, 2019. "Investor Attention and Stock Market Activities: New Evidence from Panel Data," IJFS, MDPI, vol. 7(2), pages 1-19, June.
    4. Christophe Desagre & Catherine D'Hondt, 2020. "Googlization and retail investors' trading activity," LIDAM Discussion Papers LFIN 2020004, Université catholique de Louvain, Louvain Finance (LFIN).
    5. Goodell, John W. & Kumar, Satish & Li, Xiao & Pattnaik, Debidutta & Sharma, Anuj, 2022. "Foundations and research clusters in investor attention: Evidence from bibliometric and topic modelling analysis," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 511-529.
    6. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    7. Smales, L.A., 2021. "Investor attention and global market returns during the COVID-19 crisis," International Review of Financial Analysis, Elsevier, vol. 73(C).
    8. Dong, Dayong & Wu, Keke & Fang, Jianchun & Gozgor, Giray & Yan, Cheng, 2022. "Investor attention factors and stock returns: Evidence from China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    9. Yousra Trichilli & Mouna Abdelhédi & Mouna Boujelbène Abbes, 2020. "The thermal optimal path model: Does Google search queries help to predict dynamic relationship between investor’s sentiment and indexes returns?," Journal of Asset Management, Palgrave Macmillan, vol. 21(3), pages 261-279, May.
    10. Costola, Michele & Iacopini, Matteo & Santagiustina, Carlo R.M.A., 2021. "Google search volumes and the financial markets during the COVID-19 outbreak," Finance Research Letters, Elsevier, vol. 42(C).
    11. Desagre, Christophe & D’Hondt, Catherine, 2021. "Googlization and retail trading activity," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
    12. Lof, Matthijs & van Bommel, Jos, 2023. "Asymmetric information and the distribution of trading volume," Journal of Corporate Finance, Elsevier, vol. 82(C).
    13. Chen, Haiqiang & Choi, Paul Moon Sub & Hong, Yongmiao, 2013. "How smooth is price discovery? Evidence from cross-listed stock trading," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 668-699.
    14. Chen, Zhongdong & Schmidt, Adam & Wang, Jin’ai, 2021. "Retail investor risk-seeking, attention, and the January effect," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    15. Lamoureux, Christopher G. & Wang, Qin, 2015. "Measuring private information in a specialist market," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 92-119.
    16. Yuan, Ying & Wang, Haiying & Jin, Xiu, 2022. "Pandemic-driven financial contagion and investor behavior: Evidence from the COVID-19," International Review of Financial Analysis, Elsevier, vol. 83(C).
    17. Tariq Aziz & Valeed Ahmad Ansari, 2021. "How Does Google Search Affect the Stock Market? Evidence from Indian Companies," Vision, , vol. 25(2), pages 224-232, June.
    18. Chen, Xing & Wu, Chongfeng, 2022. "Retail investor attention and information asymmetry: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 75(C).
    19. Yang, Yan-Hong & Shao, Ying-Hui, 2020. "Time-dependent lead-lag relationships between the VIX and VIX futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    20. Chia, Yee-Ee & Lim, Kian-Ping & Goh, Kim-Leng, 2020. "More shareholders, higher liquidity? Evidence from an emerging stock market," Emerging Markets Review, Elsevier, vol. 44(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:550:y:2020:i:c:s0378437120300261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.