IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v380y2007icp287-296.html
   My bibliography  Save this article

Lead-lag cross-sectional structure and detection of correlated–anticorrelated regime shifts: Application to the volatilities of inflation and economic growth rates

Author

Listed:
  • Zhou, Wei-Xing
  • Sornette, Didier

Abstract

We have recently introduced the “thermal optimal path” (TOP) method to investigate the real-time lead-lag structure between two time series. The TOP method consists in searching for a robust noise-averaged optimal path of the distance matrix along which the two time series have the greatest similarity. Here, we generalize the TOP method by introducing a more general definition of distance which takes into account possible regime shifts between positive and negative correlations. This generalization to track possible changes of correlation signs is able to identify possible transitions from one convention (or consensus) to another. Numerical simulations on synthetic time series verify that the new TOP method performs as expected even in the presence of substantial noise. We then apply it to investigate changes of convention in the dependence structure between the historical volatilities of the USA inflation rate and economic growth rate. Several measures show that the new TOP method significantly outperforms standard cross-correlation methods.

Suggested Citation

  • Zhou, Wei-Xing & Sornette, Didier, 2007. "Lead-lag cross-sectional structure and detection of correlated–anticorrelated regime shifts: Application to the volatilities of inflation and economic growth rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 287-296.
  • Handle: RePEc:eee:phsmap:v:380:y:2007:i:c:p:287-296
    DOI: 10.1016/j.physa.2007.02.114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107001781
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.02.114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Didier Sornette & Wei-Xing Zhou, 2005. "Non-parametric determination of real-time lag structure between two time series: the 'optimal thermal causal path' method," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 577-591.
    2. Taylor, John B, 1979. "Estimation and Control of a Macroeconomic Model with Rational Expectations," Econometrica, Econometric Society, vol. 47(5), pages 1267-1286, September.
    3. Davis, George & Kanago, Bryce, 1998. "High and Uncertain Inflation: Results from a New Data Set," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 30(2), pages 218-230, May.
    4. Friedman, Milton, 1977. "Nobel Lecture: Inflation and Unemployment," Journal of Political Economy, University of Chicago Press, vol. 85(3), pages 451-472, June.
    5. Hayford, Marc D., 2000. "Inflation Uncertainty, Unemployment Uncertainty and Economic Activity," Journal of Macroeconomics, Elsevier, vol. 22(2), pages 315-329, April.
    6. Jim Lee, 2002. "The Inflation-Output Variability Tradeoff and Monetary Policy: Evidence from a GARCH Model," Southern Economic Journal, John Wiley & Sons, vol. 69(1), pages 175-188, July.
    7. Defina, Robert H. & Stark, Thomas C. & Taylor, Herbert E., 1996. "The long-run variance of output and inflation under alternative monetary policy rules," Journal of Macroeconomics, Elsevier, vol. 18(2), pages 235-251.
    8. Zhou, Wei-Xing & Sornette, Didier, 2006. "Non-parametric determination of real-time lag structure between two time series: The "optimal thermal causal path" method with applications to economic data," Journal of Macroeconomics, Elsevier, vol. 28(1), pages 195-224, March.
    9. Fahim Al-Marhubi, 1998. "Cross-country evidence on the link between inflation volatility and growth," Applied Economics, Taylor & Francis Journals, vol. 30(10), pages 1317-1326.
    10. Ashley, R & Granger, C W J & Schmalensee, R, 1980. "Advertising and Aggregate Consumption: An Analysis of Causality," Econometrica, Econometric Society, vol. 48(5), pages 1149-1167, July.
    11. Jim Lee, 2004. "The Inflation‐Output Variability Trade‐off: OECD Evidence," Contemporary Economic Policy, Western Economic Association International, vol. 22(3), pages 344-356, July.
    12. Engle, Robert F. & White (the late), Halbert (ed.), 1999. "Cointegration, Causality, and Forecasting: Festschrift in Honour of Clive W. J. Granger," OUP Catalogue, Oxford University Press, number 9780198296836.
    13. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
    14. Fuhrer, Jeffrey C, 1997. "Inflation/Output Variance Trade-Offs and Optimal Monetary Policy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(2), pages 214-234, May.
    15. Wyart, Matthieu & Bouchaud, Jean-Philippe, 2007. "Self-referential behaviour, overreaction and conventions in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 63(1), pages 1-24, May.
    16. Stilianos Fountas & Menelaos Karanasos & Jinki Kim, 2006. "Inflation Uncertainty, Output Growth Uncertainty and Macroeconomic Performance," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(3), pages 319-343, June.
    17. Davis, George & Kanago, Bryce, 1996. "On Measuring the Effect of Inflation Uncertainty on Real GNP Growth," Oxford Economic Papers, Oxford University Press, vol. 48(1), pages 163-175, January.
    18. David Cobham & Peter Macmillan & David Mcmillan, 2004. "The inflation/output variability trade-off: further evidence," Applied Economics Letters, Taylor & Francis Journals, vol. 11(6), pages 347-350.
    19. Fischer, Stanley, 1974. "Money and the Production Function," Economic Inquiry, Western Economic Association International, vol. 12(4), pages 517-533, December.
    20. Kevin B. Grier & Mark J. Perry, 2000. "The effects of real and nominal uncertainty on inflation and output growth: some garch-m evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(1), pages 45-58.
    21. Robert Mundell, 1963. "Inflation and Real Interest," Journal of Political Economy, University of Chicago Press, vol. 71(3), pages 280-280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Can-Zhong & Lin, Ji-Nan & Lin, Qing-Wen & Zheng, Xu-Zhou & Liu, Xiao-Feng, 2016. "A study of causality structure and dynamics in industrial electricity consumption based on Granger network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 297-320.
    2. Yang, Yan-Hong & Shao, Ying-Hui, 2020. "Time-dependent lead-lag relationships between the VIX and VIX futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    3. Kun Guo & Wei-Xing Zhou & Si-Wei Cheng & Didier Sornette, 2011. "The US Stock Market Leads the Federal Funds Rate and Treasury Bond Yields," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    4. Lai, Lin & Guo, Kun, 2017. "The performance of one belt and one road exchange rate: Based on improved singular spectrum analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 299-308.
    5. Zhang, Yongjie & Zhang, Zuochao & Liu, Lanbiao & Shen, Dehua, 2017. "The interaction of financial news between mass media and new media: Evidence from news on Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 535-541.
    6. Xu, Hai-Chuan & Zhou, Wei-Xing & Sornette, Didier, 2017. "Time-dependent lead-lag relationship between the onshore and offshore Renminbi exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 49(C), pages 173-183.
    7. Richard Aspinall & Michele Staiano & Diane Pearson, 2021. "Emergent Properties of Land Systems: Nonlinear Dynamics of Scottish Farming Systems from 1867 to 2020," Land, MDPI, vol. 10(11), pages 1-27, November.
    8. Shao, Ying-Hui & Yang, Yan-Hong & Shao, Hao-Lin & Stanley, H. Eugene, 2019. "Time-varying lead–lag structure between the crude oil spot and futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 723-733.
    9. Yousra Trichilli & Mouna Abdelhédi & Mouna Boujelbène Abbes, 2020. "The thermal optimal path model: Does Google search queries help to predict dynamic relationship between investor’s sentiment and indexes returns?," Journal of Asset Management, Palgrave Macmillan, vol. 21(3), pages 261-279, May.
    10. Jia, Rui-Lin & Wang, Dong-Hua & Tu, Jing-Qing & Li, Sai-Ping, 2016. "Correlation between agricultural markets in dynamic perspective—Evidence from China and the US futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 83-92.
    11. Kang, Sang Hoon & Lahmiri, Salim & Uddin, Gazi Salah & Arreola Hernandez, Jose & Yoon, Seong-Min, 2020. "Inflation cycle synchronization in ASEAN countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    12. Paul Gaskell & Frank McGroarty & Thanassis Tiropanis, 2014. "Signal Diffusion Mapping: Optimal Forecasting with Time Varying Lags," Papers 1409.6443, arXiv.org.
    13. Zhicheng Liang & Junwei Wang & Kin Keung Lai, 2020. "Dependence Structure Analysis and VaR Estimation Based on China’s and International Gold Price: A Copula Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 169-193, February.
    14. Gao, Yang & Zhao, Kun & Wang, Chao & Liu, Chao, 2020. "The dynamic relationship between internet attention and stock market liquidity: A thermal optimal path method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    15. Guo, Kun & Sun, Yi & Qian, Xin, 2017. "Can investor sentiment be used to predict the stock price? Dynamic analysis based on China stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 390-396.
    16. Wang, Xuan & Guo, Kun & Lu, Xiaolin, 2016. "The long-run dynamic relationship between exchange rate and its attention index: Based on DCCA and TOP method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 108-115.
    17. Yan-Hong Yang & Ying-Hui Shao, 2019. "Time-dependent lead-lag relationships between the VIX and VIX futures markets," Papers 1910.13729, arXiv.org.
    18. Yao, Can-Zhong & Li, Hong-Yu, 2020. "Time-varying lead–lag structure between investor sentiment and stock market," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    19. Jiang, Tao & Bao, Si & Li, Long, 2019. "The linear and nonlinear lead–lag relationship among three SSE 50 Index markets: The index futures, 50ETF spot and options markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 878-893.
    20. Gong, Chen-Chen & Ji, Shen-Dan & Su, Li-Ling & Li, Sai-Ping & Ren, Fei, 2016. "The lead–lag relationship between stock index and stock index futures: A thermal optimal path method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 63-72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levent KORAP, 2009. "On the links between inflation, output growth and uncertainty: System-GARCH evidence from the Turkish economy," Iktisat Isletme ve Finans, Bilgesel Yayincilik, vol. 24(285), pages 89-110.
    2. Wilson, Bradley Kemp, 2006. "The links between inflation, inflation uncertainty and output growth: New time series evidence from Japan," Journal of Macroeconomics, Elsevier, vol. 28(3), pages 609-620, September.
    3. Narayan, Seema & Narayan, Paresh Kumar, 2013. "The inflation–output nexus: Empirical evidence from India, South Africa, and Brazil," Research in International Business and Finance, Elsevier, vol. 28(C), pages 19-34.
    4. Mustafa Caglayan & Ozge Kandemir & Kostas Mouratidis, 2012. "The Impact of Inflation Uncertainty on Economic Growth: A MRS-IV Approach," Working Papers 2012025, The University of Sheffield, Department of Economics.
    5. Mehmet Balcilar & Zeynel Abidin Ozdemir, 2020. "A re-examination of growth and growth uncertainty relationship in a stochastic volatility in the mean model with time-varying parameters," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(3), pages 611-641, August.
    6. B. Balaji & S. Raja Sethu Durai & M. Ramachandran, 2018. "Spillover Effects of Real and Nominal Uncertainties in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(1), pages 143-162, December.
    7. repec:awi:wpaper:0475 is not listed on IDEAS
    8. Bipradas Rit, 2012. "The Relationship between Inflation, Inflation Uncertainty and Output Growth in India," Working Papers 1211, Indian Institute of Foreign Trade.
    9. Said Zamin Shah & Ahmad Zubaidi Baharumshah & Muzafar Shah Habibullah, 2019. "Dynamic Linkages and Volatility Transmissions between Macroeconomic Uncertainty and Performance: Evidence from South Asian Countries," Journal of South Asian Development, , vol. 14(3), pages 281-313, December.
    10. Zeynel Abidin Ozdemir, 2010. "Dynamics Of Inflation, Output Growth And Their Uncertainty In The Uk: An Empirical Analysis," Manchester School, University of Manchester, vol. 78(6), pages 511-537, December.
    11. Karanasos Menelaos & Schurer Stefanie, 2008. "Is the Relationship between Inflation and Its Uncertainty Linear?," German Economic Review, De Gruyter, vol. 9(3), pages 265-286, August.
    12. Kuang‐Liang Chang & Chi‐Wei He, 2010. "Does The Magnitude Of The Effect Of Inflation Uncertainty On Output Growth Depend On The Level Of Inflation?," Manchester School, University of Manchester, vol. 78(2), pages 126-148, March.
    13. Ahmad Zubaidi Baharumshah & Siew-Voon Soon, 2014. "Inflation, inflation uncertainty and output growth: what does the data say for Malaysia?," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 41(3), pages 370-386, May.
    14. Carmen PINTILESCU & Mircea ASANDULUI & Elena-Daniela VIORICA & Danut-Vasile JEMNA, 2016. "Investigation On The Causal Relationship Between Inflation, Output Growth And Their Uncertainties In Romania," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 17, pages 71-89, June.
    15. Fang, WenShwo & Miller, Stephen M., 2009. "Modeling the volatility of real GDP growth: The case of Japan revisited," Japan and the World Economy, Elsevier, vol. 21(3), pages 312-324, August.
    16. Kushal Banik Chowdhury & Kaustav Kanti Sarkar & Srikanta Kundu, 2021. "Nonlinear relationships between inflation, output growth and uncertainty in India: New evidence from a bivariate threshold model," Bulletin of Economic Research, Wiley Blackwell, vol. 73(3), pages 469-493, July.
    17. Komain Jiranyakul & Timothy P. Opiela, 2011. "The Impact of Inflation Uncertainty on Output Growth and Inflation in Thailand," Asian Economic Journal, East Asian Economic Association, vol. 25(3), pages 291-307, September.
    18. WenShwo Fang & Stephen M. Miller & ChunShen Lee, 2008. "Cross‐Country Evidence On Output Growth Volatility: Nonstationary Variance And Garch Models," Scottish Journal of Political Economy, Scottish Economic Society, vol. 55(4), pages 509-541, September.
    19. Chi-Wei Su & Hui Yu & Hsu-Ling Chang & Xiao-Lin Li, 2017. "How does inflation determine inflation uncertainty? A Chinese perspective," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1417-1434, May.
    20. Doaa Akl Ahmed & Mamdouh Abdelmoula M. Abdelsalam, 2018. "Inflation Instability Impact on Interest Rate in Egypt: Augmented Fisher Hypothesis Test," Applied Economics and Finance, Redfame publishing, vol. 5(1), pages 1-13, January.
    21. Georgios Bampinas & Panagiotis Konstantinou & Theodore Panagiotidis, 2021. "Reassessing the inflation uncertainty‐inflation relationship in the tails," Bulletin of Economic Research, Wiley Blackwell, vol. 73(4), pages 508-534, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:380:y:2007:i:c:p:287-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.