IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v527y2019ics0378437119307083.html
   My bibliography  Save this article

Propose a new approach of fuzzy lookup table method to predict Al2O3/deionized water nanofluid thermal conductivity based on achieved empirical data

Author

Listed:
  • Jiang, Yu
  • Bahrami, Mehrdad
  • Bagherzadeh, Seyed Amin
  • Abdollahi, Ali
  • Sulgani, Mohsen Tahmasebi
  • Karimipour, Arash
  • Goodarzi, Marjan
  • Bach, Quang-Vu

Abstract

The mixture of Al2O3/deionized water nanofluid thermal conductivity is experimentally examined at various temperatures and mass fractions. Then, a new prediction approach of fuzzy lookup table method (FLTM) is developed to estimate the mixture thermal conductivity. The thermal conductivity of Al2O3/deionized water nanofluid is measured by several experiments; and then the statistical/numerical approach of fuzzy lookup table method is presented. It is seen that more temperature and nanoparticles concentration correspond to more nanofluid thermal conductivity. It is also observed that the proposed model can be utilized to predict the output at the training data-set in order to verify its precision. Moreover, the model outputs error percentages respect to the measured thermal conductivity for dissimilar temperatures and nanoparticle concentrations are small which means the resultant model can be interpreted as an acceptable approach due to small values of errors and less computation costs.

Suggested Citation

  • Jiang, Yu & Bahrami, Mehrdad & Bagherzadeh, Seyed Amin & Abdollahi, Ali & Sulgani, Mohsen Tahmasebi & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "Propose a new approach of fuzzy lookup table method to predict Al2O3/deionized water nanofluid thermal conductivity based on achieved empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
  • Handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119307083
    DOI: 10.1016/j.physa.2019.121177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119307083
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Yeping & Khaled, Usama & Al-Rashed, Abdullah A.A.A. & Meer, Rashid & Goodarzi, Marjan & Sarafraz, M.M., 2020. "Potential application of Response Surface Methodology (RSM) for the prediction and optimization of thermal conductivity of aqueous CuO (II) nanofluid: A statistical approach and experimental validatio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    2. Li, Zhixiong & Shahrajabian, Hamzeh & Bagherzadeh, Seyed Amin & Jadidi, Hamid & Karimipour, Arash & Tlili, Iskander, 2020. "Effects of nano-clay content, foaming temperature and foaming time on density and cell size of PVC matrix foam by presented Least Absolute Shrinkage and Selection Operator statistical regression via s," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Tian, Zhe & Arasteh, Hossein & Parsian, Amir & Karimipour, Arash & Safaei, Mohammad Reza & Nguyen, Truong Khang, 2019. "Estimate the shear rate & apparent viscosity of multi-phased non-Newtonian hybrid nanofluids via new developed Support Vector Machine method coupled with sensitivity analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    5. Wu, Huawei & Bagherzadeh, Seyed Amin & D’Orazio, Annunziata & Habibollahi, Navid & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "Present a new multi objective optimization statistical Pareto frontier method composed of artificial neural network and multi objective genetic algorithm to improve the pipe flow hydrodynamic and ther," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Wei, Li & Arasteh, Hossein & abdollahi, Ali & Parsian, Amir & Taghipour, Abdolmajid & Mashayekhi, Ramin & Tlili, Iskander, 2020. "Locally weighted moving regression: A non-parametric method for modeling nanofluid features of dynamic viscosity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119307083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.