IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v537y2020ics0378437119315079.html
   My bibliography  Save this article

Effects of nano-clay content, foaming temperature and foaming time on density and cell size of PVC matrix foam by presented Least Absolute Shrinkage and Selection Operator statistical regression via suitable experiments as a function of MMT content

Author

Listed:
  • Li, Zhixiong
  • Shahrajabian, Hamzeh
  • Bagherzadeh, Seyed Amin
  • Jadidi, Hamid
  • Karimipour, Arash
  • Tlili, Iskander

Abstract

Present article aims to investigate the effect of nano-clay content, foaming temperature and foaming time on the density and cell size of the PVC matrix foam. The cell size would affect the insulating and mechanical properties. The foaming temperature is set in three levels of 70, 80 and 90 °C, foaming time is set in three levels of 10, 20, and 30 s; and nano-clay is in content of 1, 3, and 5 wt%. Outputs consist the density and cell size, which affect impact the thermal conductivity, mechanical properties and the weight of the polymer foam. In addition the Least Absolute Shrinkage and Selection Operator (LASSO) regression method is employed in order to improve both the precision and generalization of the estimated foam density and cell size as functions of the MMT content, the foaming temperature and the foaming time. LASSO is found a suitable approach to predict the sample properties.

Suggested Citation

  • Li, Zhixiong & Shahrajabian, Hamzeh & Bagherzadeh, Seyed Amin & Jadidi, Hamid & Karimipour, Arash & Tlili, Iskander, 2020. "Effects of nano-clay content, foaming temperature and foaming time on density and cell size of PVC matrix foam by presented Least Absolute Shrinkage and Selection Operator statistical regression via s," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
  • Handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119315079
    DOI: 10.1016/j.physa.2019.122637
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119315079
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122637?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Yu & Bahrami, Mehrdad & Bagherzadeh, Seyed Amin & Abdollahi, Ali & Sulgani, Mohsen Tahmasebi & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "Propose a new approach of fuzzy lookup table method to predict Al2O3/deionized water nanofluid thermal conductivity based on achieved empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    2. Jiang, Yu & Sulgani, Mohsen Tahmasebi & Ranjbarzadeh, Ramin & Karimipour, Arash & Nguyen, Truong Khang, 2019. "Hybrid GMDH-type neural network to predict fluid surface tension, shear stress, dynamic viscosity & sensitivity analysis based on empirical data of iron(II) oxide nanoparticles in light crude oil mixt," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    3. Bagherzadeh, Seyed Amin & Sulgani, Mohsen Tahmasebi & Nikkhah, Vahid & Bahrami, Mehrdad & Karimipour, Arash & Jiang, Yu, 2019. "Minimize pressure drop and maximize heat transfer coefficient by the new proposed multi-objective optimization/statistical model composed of “ANN + Genetic Algorithm” based on empirical data of CuO/pa," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    4. Karimipour, Arash & Bagherzadeh, Seyed Amin & Taghipour, Abdolmajid & Abdollahi, Ali & Safaei, Mohammad Reza, 2019. "A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 89-97.
    5. Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
    6. Bagherzadeh, Seyed Amin & D’Orazio, Annunziata & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: Outputs predicted analytically instead of numerically to more accuracy and less costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 406-415.
    7. Nafchi, Peyman Mirzakhani & Karimipour, Arash & Afrand, Masoud, 2019. "The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhixiong & Ashkezari, Abbas Zarenezhad & Tlili, Iskander, 2020. "Applying artificial neural network and curve fitting method to predict the viscosity of SAE50/MWCNTs-TiO2 hybrid nanolubricant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    2. Wei, Li & Arasteh, Hossein & abdollahi, Ali & Parsian, Amir & Taghipour, Abdolmajid & Mashayekhi, Ramin & Tlili, Iskander, 2020. "Locally weighted moving regression: A non-parametric method for modeling nanofluid features of dynamic viscosity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Zhe & Arasteh, Hossein & Parsian, Amir & Karimipour, Arash & Safaei, Mohammad Reza & Nguyen, Truong Khang, 2019. "Estimate the shear rate & apparent viscosity of multi-phased non-Newtonian hybrid nanofluids via new developed Support Vector Machine method coupled with sensitivity analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Wei, Li & Arasteh, Hossein & abdollahi, Ali & Parsian, Amir & Taghipour, Abdolmajid & Mashayekhi, Ramin & Tlili, Iskander, 2020. "Locally weighted moving regression: A non-parametric method for modeling nanofluid features of dynamic viscosity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    3. Wu, Huawei & Bagherzadeh, Seyed Amin & D’Orazio, Annunziata & Habibollahi, Navid & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "Present a new multi objective optimization statistical Pareto frontier method composed of artificial neural network and multi objective genetic algorithm to improve the pipe flow hydrodynamic and ther," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    5. Zarei, Amir & Karimipour, Arash & Meghdadi Isfahani, Amir Homayoon & Tian, Zhe, 2019. "Improve the performance of lattice Boltzmann method for a porous nanoscale transient flow by provide a new modified relaxation time equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Ahmadi, Mohammad Hossein & Baghban, Alireza & Sadeghzadeh, Milad & Hadipoor, Masoud & Ghazvini, Mahyar, 2020. "Evolving connectionist approaches to compute thermal conductivity of TiO2/water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Roy Setiawan & Reza Daneshfar & Omid Rezvanjou & Siavash Ashoori & Maryam Naseri, 2021. "Surface tension of binary mixtures containing environmentally friendly ionic liquids: Insights from artificial intelligence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17606-17627, December.
    8. Jiang, Ping & Liu, Zhenkun & Niu, Xinsong & Zhang, Lifang, 2021. "A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting," Energy, Elsevier, vol. 217(C).
    9. Mohammed Algarni & Mashhour A. Alazwari & Mohammad Reza Safaei, 2021. "Optimization of Nano-Additive Characteristics to Improve the Efficiency of a Shell and Tube Thermal Energy Storage System Using a Hybrid Procedure: DOE, ANN, MCDM, MOO, and CFD Modeling," Mathematics, MDPI, vol. 9(24), pages 1-30, December.
    10. Ahmadi, Mohammad Hossein & Ghazvini, Mahyar & Maddah, Heydar & Kahani, Mostafa & Pourfarhang, Samira & Pourfarhang, Amin & Heris, Saeed Zeinali, 2020. "Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    11. Ghazvini, Mahyar & Maddah, Heydar & Peymanfar, Reza & Ahmadi, Mohammad Hossein & Kumar, Ravinder, 2020. "Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    12. Al-Rashed, Abdullah A.A.A., 2019. "Optimization of heat transfer and pressure drop of nano-antifreeze using statistical method of response surface methodology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 531-542.
    13. Zheng, Yuanzhou & Shadloo, Mostafa Safdari & Nasiri, Hossein & Maleki, Akbar & Karimipour, Arash & Tlili, Iskander, 2020. "Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations," Renewable Energy, Elsevier, vol. 153(C), pages 1296-1306.
    14. Ammar A. Melaibari & Yacine Khetib & Abdullah K. Alanazi & S. Mohammad Sajadi & Mohsen Sharifpur & Goshtasp Cheraghian, 2021. "Applying Artificial Neural Network and Response Surface Method to Forecast the Rheological Behavior of Hybrid Nano-Antifreeze Containing Graphene Oxide and Copper Oxide Nanomaterials," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
    15. Anum Shafiq & Ilyas Khan & Ghulam Rasool & El-Sayed M. Sherif & Asiful H. Sheikh, 2020. "Influence of Single- and Multi-Wall Carbon Nanotubes on Magnetohydrodynamic Stagnation Point Nanofluid Flow over Variable Thicker Surface with Concave and Convex Effects," Mathematics, MDPI, vol. 8(1), pages 1-15, January.
    16. Hemmat Esfe, Mohammad & Esfandeh, Saeed, 2020. "The statistical investigation of multi-grade oil based nanofluids: Enriched by MWCNT and ZnO nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    17. Arani, Ali Akbar Abbasian & Alirezaie, Ali & Kamyab, Mohammad Hassan & Motallebi, Sayyid Majid, 2020. "Statistical analysis of enriched water heat transfer with various sizes of MgO nanoparticles using artificial neural networks modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    18. Jose J. Aguilar-Fuertes & Francisco Noguero-Rodríguez & José C. Jaen Ruiz & Luis M. García-RAffi & Sergio Hoyas, 2021. "Tracking Turbulent Coherent Structures by Means of Neural Networks," Energies, MDPI, vol. 14(4), pages 1-15, February.
    19. Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
    20. Jamei, Mehdi & Ahmadianfar, Iman, 2020. "A rigorous model for prediction of viscosity of oil-based hybrid nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119315079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.