IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v527y2019ics0378437119306454.html
   My bibliography  Save this article

Minimize pressure drop and maximize heat transfer coefficient by the new proposed multi-objective optimization/statistical model composed of “ANN + Genetic Algorithm” based on empirical data of CuO/paraffin nanofluid in a pipe

Author

Listed:
  • Bagherzadeh, Seyed Amin
  • Sulgani, Mohsen Tahmasebi
  • Nikkhah, Vahid
  • Bahrami, Mehrdad
  • Karimipour, Arash
  • Jiang, Yu

Abstract

A new multi-objective optimization model composed of the artificial neural network (ANN) and the genetic algorithm (GA) methods based on the empirical thermo-physical characteristics of CuO/liquid paraffin nanofluid flow in a pipe is presented for the first time. It means a new optimization /statistical approach is achieved based on ANN together with GA; so that at first ANN is employed to predict the nanofluid thermo-physical properties and then the heat transfer coefficient and the pressure drop ratios of the nanofluid to the basefluid, are optimized as well as to minimize the pressure drop ratio and maximize the heat transfer coefficient ratio by using the multi-objective optimization approach of GA. The results of the multi-objective optimization via the GA show that the Pareto optimal front quantifies the trade-offs in satisfying the two fitness function of heat transfer coefficient and the pressure drop ratios.

Suggested Citation

  • Bagherzadeh, Seyed Amin & Sulgani, Mohsen Tahmasebi & Nikkhah, Vahid & Bahrami, Mehrdad & Karimipour, Arash & Jiang, Yu, 2019. "Minimize pressure drop and maximize heat transfer coefficient by the new proposed multi-objective optimization/statistical model composed of “ANN + Genetic Algorithm” based on empirical data of CuO/pa," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
  • Handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119306454
    DOI: 10.1016/j.physa.2019.121056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119306454
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhixiong & Shahrajabian, Hamzeh & Bagherzadeh, Seyed Amin & Jadidi, Hamid & Karimipour, Arash & Tlili, Iskander, 2020. "Effects of nano-clay content, foaming temperature and foaming time on density and cell size of PVC matrix foam by presented Least Absolute Shrinkage and Selection Operator statistical regression via s," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Wu, Huawei & Bagherzadeh, Seyed Amin & D’Orazio, Annunziata & Habibollahi, Navid & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "Present a new multi objective optimization statistical Pareto frontier method composed of artificial neural network and multi objective genetic algorithm to improve the pipe flow hydrodynamic and ther," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Arani, Ali Akbar Abbasian & Alirezaie, Ali & Kamyab, Mohammad Hassan & Motallebi, Sayyid Majid, 2020. "Statistical analysis of enriched water heat transfer with various sizes of MgO nanoparticles using artificial neural networks modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    4. Wei, Li & Arasteh, Hossein & abdollahi, Ali & Parsian, Amir & Taghipour, Abdolmajid & Mashayekhi, Ramin & Tlili, Iskander, 2020. "Locally weighted moving regression: A non-parametric method for modeling nanofluid features of dynamic viscosity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119306454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.