IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i20p4015-d278445.html
   My bibliography  Save this article

Future Temperature Extremes Will Be More Harmful: A New Critical Factor for Improved Forecasts

Author

Listed:
  • Costas A. Varotsos

    (Climate Research Group, Division of Environmental Physics and Meteorology, Faculty of Physics, National and Kapodistrian University of Athens, University Campus Bldg. Phys. V, 15784 Athens, Greece
    Department of General Ecology and Hydrobiology, Lomonosov Moscow State University, Leninskiye gory, 1, 199991 Moscow, Russia)

  • Yuri A. Mazei

    (Department of General Ecology and Hydrobiology, Lomonosov Moscow State University, Leninskiye gory, 1, 199991 Moscow, Russia)

Abstract

There is increasing evidence that extreme weather events such as frequent and intense cold spells and heat waves cause unprecedented deaths and diseases in both developed and developing countries. Thus, they require extensive and immediate research to limit the risks involved. Average temperatures in Europe in June–July 2019 were the hottest ever measured and attributed to climate change. The problem, however, of a thorough study of natural climate change is the lack of experimental data from the long past, where anthropogenic activity was then very limited. Today, this problem can be successfully resolved using, inter alia, biological indicators that have provided reliable environmental information for thousands of years in the past. The present study used high-resolution quantitative reconstruction data derived from biological records of Lake Silvaplana sediments covering the period 1181–1945. The purpose of this study was to determine whether a slight temperature change in the past could trigger current or future intense temperature change or changes. Modern analytical tools were used for this purpose, which eventually showed that temperature fluctuations were persistent. That is, they exhibit long memory with scaling behavior, which means that an increase (decrease) in temperature in the past was always followed by another increase (decrease) in the future with multiple amplitudes. Therefore, the increase in the frequency, intensity, and duration of extreme temperature events due to climate change will be more pronounced than expected. This will affect human well-being and mortality more than that estimated in today’s modeling scenarios. The scaling property detected here can be used for more accurate monthly to decadal forecasting of extreme temperature events. Thus, it is possible to develop improved early warning systems that will reduce the public health risk at local, national, and international levels.

Suggested Citation

  • Costas A. Varotsos & Yuri A. Mazei, 2019. "Future Temperature Extremes Will Be More Harmful: A New Critical Factor for Improved Forecasts," IJERPH, MDPI, vol. 16(20), pages 1-10, October.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:20:p:4015-:d:278445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/20/4015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/20/4015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Trevor J. Porter & Spruce W. Schoenemann & Lauren J. Davies & Eric J. Steig & Sasiri Bandara & Duane G. Froese, 2019. "Recent summer warming in northwestern Canada exceeds the Holocene thermal maximum," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Mintzelas, A. & Sarlis, N.V. & Christopoulos, S.-R.G., 2018. "Estimation of multifractality based on natural time analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 153-164.
    3. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. YoungSeok Hwang & Jung-Sup Um & Stephan Schlüter, 2020. "Evaluating the Mutual Relationship between IPAT/Kaya Identity Index and ODIAC-Based GOSAT Fossil-Fuel CO 2 Flux: Potential and Constraints in Utilizing Decomposed Variables," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    2. Yawen Wang & Qing Wang & Zhaopeng Xing, 2022. "Climate Disaster Losses and Foreign Exchange Reserve Dynamics: Evidence of East Asia Pacific," Sustainability, MDPI, vol. 14(21), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mendonça, Suzielli M. & Cabella, Brenno C.T. & Martinez, Alexandre S., 2024. "A Multifractal Detrended Fluctuation Analysis approach using generalized functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Chatterjee, Sucharita & Ghosh, Dipak, 2021. "Impact of Global Warming on SENSEX fluctuations — A study based on Multifractal detrended cross correlation analysis between the temperature anomalies and the SENSEX fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    3. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    5. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    6. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    7. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    8. Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    9. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of periodic and quasi-periodic trends in detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 777-784.
    10. Diniz-Maganini, Natalia & Diniz, Eduardo H. & Rasheed, Abdul A., 2021. "Bitcoin’s price efficiency and safe haven properties during the COVID-19 pandemic: A comparison," Research in International Business and Finance, Elsevier, vol. 58(C).
    11. Mei, Dexiang & Liu, Jing & Ma, Feng & Chen, Wang, 2017. "Forecasting stock market volatility: Do realized skewness and kurtosis help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 153-159.
    12. Zhang, Jiao & Li, Youping & Liu, Chunqiong & Wu, Bo & Shi, Kai, 2022. "A study of cross-correlations between PM2.5 and O3 based on Copula and Multifractal methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    13. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
    14. Yun-Jung Lee & Neung-Woo Kim & Ki-Hong Choi & Seong-Min Yoon, 2020. "Analysis of the Informational Efficiency of the EU Carbon Emission Trading Market: Asymmetric MF-DFA Approach," Energies, MDPI, vol. 13(9), pages 1-14, May.
    15. Li, Xing, 2021. "On the multifractal analysis of air quality index time series before and during COVID-19 partial lockdown: A case study of Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    16. Stosic, Tatijana & Telesca, Luciano & Stosic, Borko, 2021. "Multiparametric statistical and dynamical analysis of angular high-frequency wind speed time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    17. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
    18. Juraj Čurpek, 2019. "Time Evolution of Hurst Exponent: Czech Wholesale Electricity Market Study," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2019(3), pages 25-44.
    19. Zheng, Zeyu & Xiao, Rui & Shi, Haibo & Li, Guihong & Zhou, Xiaofeng, 2015. "Statistical regularities of Carbon emission trading market: Evidence from European Union allowances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 9-15.
    20. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:20:p:4015-:d:278445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.