IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v545y2020ics0378437119319910.html
   My bibliography  Save this article

On the integrability of the generalized Pochhammer–Chree (PC) equations

Author

Listed:
  • EL Achab, Abdelfattah

Abstract

In this paper, the generalized Pochhammer–Chree (PC) equations which the propagation of longitudinal deformation waves in an elastic rod is considered. By using the Weierstrass elliptic function method, we find exact traveling wave solutions. As a result, some previously known solutions are recovered, and at the same time some new ones are also given. Moreover, three-dimension and two-dimension graphics of some solutions have been plotted.

Suggested Citation

  • EL Achab, Abdelfattah, 2020. "On the integrability of the generalized Pochhammer–Chree (PC) equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  • Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119319910
    DOI: 10.1016/j.physa.2019.123576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119319910
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    2. He, Ji-Huan & Abdou, M.A., 2007. "New periodic solutions for nonlinear evolution equations using Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1421-1429.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    2. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    3. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    4. Bekir, Ahmet & Boz, Ahmet, 2009. "Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 458-465.
    5. Soliman, A.A., 2009. "Exact solutions of KdV–Burgers’ equation by Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1034-1039.
    6. Erbaş, Barış & Yusufoğlu, Elçin, 2009. "Exp-function method for constructing exact solutions of Sharma–Tasso–Olver equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2326-2330.
    7. Khani, F., 2009. "Analytic study on the higher order Ito equations: New solitary wave solutions using the Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2128-2134.
    8. Javidi, M. & Golbabai, A., 2009. "A new domain decomposition algorithm for generalized Burger’s–Huxley equation based on Chebyshev polynomials and preconditioning," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 849-857.
    9. Bekir, Ahmet, 2009. "The tanh–coth method combined with the Riccati equation for solving non-linear equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1467-1474.
    10. Sheng Zhang & Jiao Gao & Bo Xu, 2022. "An Integrable Evolution System and Its Analytical Solutions with the Help of Mixed Spectral AKNS Matrix Problem," Mathematics, MDPI, vol. 10(21), pages 1-16, October.
    11. Suheel Abdullah Malik & Ijaz Mansoor Qureshi & Muhammad Amir & Aqdas Naveed Malik & Ihsanul Haq, 2015. "Numerical Solution to Generalized Burgers'-Fisher Equation Using Exp-Function Method Hybridized with Heuristic Computation," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    12. Nguyen, Lu Trong Khiem, 2015. "Modified homogeneous balance method: Applications and new solutions," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 148-155.
    13. M. Ali Akbar & Md. Nur Alam & Md. Golam Hafez, 2016. "Application of the novel (G′/G)-expansion method to construct traveling wave solutions to the positive Gardner-KP equation," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(1), pages 85-96, March.
    14. Jing Chang & Jin Zhang & Ming Cai, 2021. "Series Solutions of High-Dimensional Fractional Differential Equations," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
    15. Chein-Shan Liu & Yung-Wei Chen, 2021. "A Simplified Lindstedt-Poincaré Method for Saving Computational Cost to Determine Higher Order Nonlinear Free Vibrations," Mathematics, MDPI, vol. 9(23), pages 1-17, November.
    16. Zhou, Jiangrui & Zhou, Rui & Zhu, Shihui, 2020. "Peakon, rational function and periodic solutions for Tzitzeica–Dodd–Bullough type equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    17. Chein-Shan Liu, 2021. "Linearized Homotopy Perturbation Method for Two Nonlinear Problems of Duffing Equations," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 13(6), pages 1-10, December.
    18. Sheng Zhang & Yuanyuan Wei & Bo Xu, 2019. "Fractional Soliton Dynamics and Spectral Transform of Time-Fractional Nonlinear Systems: A Concrete Example," Complexity, Hindawi, vol. 2019, pages 1-9, August.
    19. Hassan Kamil Jassim & Mohammed Abdulshareef Hussein, 2023. "A New Approach for Solving Nonlinear Fractional Ordinary Differential Equations," Mathematics, MDPI, vol. 11(7), pages 1-13, March.
    20. S. Ganji & A. Barari & L. Ibsen & G. Domairry, 2012. "Differential transform method for mathematical modeling of jamming transition problem in traffic congestion flow," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 87-100, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119319910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.