IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p3070-d690806.html
   My bibliography  Save this article

A Simplified Lindstedt-Poincaré Method for Saving Computational Cost to Determine Higher Order Nonlinear Free Vibrations

Author

Listed:
  • Chein-Shan Liu

    (Center of Excellence for Ocean Engineering, Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan)

  • Yung-Wei Chen

    (Department of Marine Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan)

Abstract

In order to improve the Lindstedt-Poincaré method to raise the accuracy and the performance for the application to strongly nonlinear oscillators, a new analytic method by engaging in advance a linearization technique in the nonlinear differential equation is developed, which is realized in terms of a weight factor to decompose the nonlinear term into two sides. We expand the constant preceding the displacement in powers of the introduced parameter so that the coefficients can be determined to avoid the appearance of secular solutions. The present linearized Lindstedt-Poincaré method is easily implemented to provide accurate higher order analytic solutions of nonlinear oscillators, such as Duffing and van Der Pol nonlinear oscillators. The accuracy of analytic solutions is evaluated by comparing to the numerical results obtained from the fourth-order Runge-Kotta method. The major novelty is that we can simplify the Lindstedt-Poincaré method to solve strongly a nonlinear oscillator with a large vibration amplitude.

Suggested Citation

  • Chein-Shan Liu & Yung-Wei Chen, 2021. "A Simplified Lindstedt-Poincaré Method for Saving Computational Cost to Determine Higher Order Nonlinear Free Vibrations," Mathematics, MDPI, vol. 9(23), pages 1-17, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3070-:d:690806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/3070/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/3070/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chein-Shan Liu, 2021. "Linearized Homotopy Perturbation Method for Two Nonlinear Problems of Duffing Equations," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 13(6), pages 1-10, December.
    2. Gadella, M. & Giacomini, H. & Lara, L.P., 2015. "Periodic analytic approximate solutions for the Mathieu equation," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 436-445.
    3. He, Ji-Huan & Abdou, M.A., 2007. "New periodic solutions for nonlinear evolution equations using Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1421-1429.
    4. Wei, Zhouchao & Zhu, Bin & Yang, Jing & Perc, Matjaž & Slavinec, Mitja, 2019. "Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 265-281.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    2. EL Achab, Abdelfattah, 2020. "On the integrability of the generalized Pochhammer–Chree (PC) equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Yang, Bowen & Liu, Ping, 2019. "Global stability and Hopf bifurcation of a three-component model for cell production systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 478-489.
    4. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    5. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    6. Chein-Shan Liu, 2021. "Linearized Homotopy Perturbation Method for Two Nonlinear Problems of Duffing Equations," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 13(6), pages 1-10, December.
    7. Prakash, M. & Rakkiyappan, R. & Manivannan, A. & Cao, Jinde, 2019. "Dynamical analysis of antigen-driven T-cell infection model with multiple delays," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 266-281.
    8. Deng, Shuning & Ji, Jinchen & Wen, Guilin & Xu, Huidong, 2021. "A comparative study of the dynamics of a three-disk dynamo system with and without time delay," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    9. S. Ganji & A. Barari & L. Ibsen & G. Domairry, 2012. "Differential transform method for mathematical modeling of jamming transition problem in traffic congestion flow," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 87-100, March.
    10. Bekir, Ahmet & Boz, Ahmet, 2009. "Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 458-465.
    11. Da-Quan, Xian & Zheng-De, Dai, 2009. "Application of Exp-function method to potential Kadomtsev–Petviashvili equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2653-2659.
    12. Yu, Jiali & Yi, Zhang & Zhang, Lei, 2009. "Periodicity of a class of nonlinear fuzzy systems with delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1343-1351.
    13. Soliman, A.A., 2009. "Exact solutions of KdV–Burgers’ equation by Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1034-1039.
    14. Erbaş, Barış & Yusufoğlu, Elçin, 2009. "Exp-function method for constructing exact solutions of Sharma–Tasso–Olver equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2326-2330.
    15. Khani, F., 2009. "Analytic study on the higher order Ito equations: New solitary wave solutions using the Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2128-2134.
    16. Javidi, M. & Golbabai, A., 2009. "A new domain decomposition algorithm for generalized Burger’s–Huxley equation based on Chebyshev polynomials and preconditioning," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 849-857.
    17. Chein-Shan Liu, 2020. "Analytic Solutions of the Eigenvalues of Mathieu’s Equation," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 12(1), pages 1-1, February.
    18. Navid Moghadam, Nastaran & Nazarimehr, Fahimeh & Jafari, Sajad & Sprott, Julien C., 2020. "Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    19. Rizvi, Syed T.R. & Seadawy, Aly R. & Ahmed, Sarfaraz & Younis, Muhammad & Ali, Kashif, 2021. "Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    20. Bekir, Ahmet, 2009. "The tanh–coth method combined with the Riccati equation for solving non-linear equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1467-1474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3070-:d:690806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.