IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i2p849-857.html
   My bibliography  Save this article

A new domain decomposition algorithm for generalized Burger’s–Huxley equation based on Chebyshev polynomials and preconditioning

Author

Listed:
  • Javidi, M.
  • Golbabai, A.

Abstract

In this study, we use the spectral collocation method using Chebyshev polynomials for spatial derivatives and fourth order Runge–Kutta method for time integration to solve the generalized Burger’s–Huxley equation (GBHE). To reduce round-off error in spectral collocation (pseudospectral) method we use preconditioning. Firstly, theory of application of Chebyshev spectral collocation method with preconditioning (CSCMP) and domain decomposition on the generalized Burger’s–Huxley equation presented. This method yields a system of ordinary differential algebric equations (DAEs). Secondly, we use fourth order Runge–Kutta formula for the numerical integration of the system of DAEs. The numerical results obtained by this way have been compared with the exact solution to show the efficiency of the method.

Suggested Citation

  • Javidi, M. & Golbabai, A., 2009. "A new domain decomposition algorithm for generalized Burger’s–Huxley equation based on Chebyshev polynomials and preconditioning," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 849-857.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:2:p:849-857
    DOI: 10.1016/j.chaos.2007.01.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790700166X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.01.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javidi, M. & Jalilian, Y., 2008. "Exact solitary wave solution of Boussinesq equation by VIM," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1256-1260.
    2. He, Ji-Huan, 2005. "Limit cycle and bifurcation of nonlinear problems," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 827-833.
    3. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    4. He, Ji-Huan, 2005. "Application of homotopy perturbation method to nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 695-700.
    5. Soliman, A.A., 2006. "A numerical simulation and explicit solutions of KdV-Burgers’ and Lax’s seventh-order KdV equations," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 294-302.
    6. He, Ji-Huan & Abdou, M.A., 2007. "New periodic solutions for nonlinear evolution equations using Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1421-1429.
    7. Javidi, M. & Golbabai, A., 2008. "Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 309-313.
    8. Abulwafa, E.M. & Abdou, M.A. & Mahmoud, A.A., 2006. "The solution of nonlinear coagulation problem with mass loss," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 313-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Somayeh Abdi-Mazraeh & Ali Khani & Safar Irandoust-Pakchin, 2020. "Multiple Shooting Method for Solving Black–Scholes Equation," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 723-746, December.
    2. Duan, Yali & Kong, Linghua & Zhang, Rui, 2012. "A lattice Boltzmann model for the generalized Burgers–Huxley equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 625-632.
    3. Hassan, M.M. & Abdel-Razek, M.A. & Shoreh, A.A.-H., 2015. "Explicit exact solutions of some nonlinear evolution equations with their geometric interpretations," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 243-252.
    4. Korkut, Sıla Övgü, 2023. "An accurate and efficient numerical solution for the generalized Burgers–Huxley equation via Taylor wavelets method: Qualitative analyses and Applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 324-341.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    2. Soliman, A.A., 2009. "Exact solutions of KdV–Burgers’ equation by Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1034-1039.
    3. Batiha, B. & Noorani, M.S.M. & Hashim, I., 2008. "Application of variational iteration method to the generalized Burgers–Huxley equation," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 660-663.
    4. Javidi, M. & Golbabai, A., 2009. "Modified homotopy perturbation method for solving non-linear Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1408-1412.
    5. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    6. Javidi, M. & Golbabai, A., 2008. "Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 309-313.
    7. (Benn)Wu, Xu-Hong & He, Ji-Huan, 2008. "EXP-function method and its application to nonlinear equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 903-910.
    8. Gordoa, P.R., 2007. "A note on solutions of an equation modelling arterial deformation," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1505-1511.
    9. Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
    10. Moghimi, Mahdi & Hejazi, Fatemeh S.A., 2007. "Variational iteration method for solving generalized Burger–Fisher and Burger equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1756-1761.
    11. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    12. Mei, Shu-Li & Du, Cheng-Jin & Zhang, Sen-Wen, 2008. "Asymptotic numerical method for multi-degree-of-freedom nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 536-542.
    13. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    14. Bekir, Ahmet & Boz, Ahmet, 2009. "Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 458-465.
    15. Tao, Zhao-Ling, 2009. "Frequency–amplitude relationship of nonlinear oscillators by He’s parameter-expanding method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 642-645.
    16. Erbaş, Barış & Yusufoğlu, Elçin, 2009. "Exp-function method for constructing exact solutions of Sharma–Tasso–Olver equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2326-2330.
    17. Khani, F., 2009. "Analytic study on the higher order Ito equations: New solitary wave solutions using the Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2128-2134.
    18. Mahmoud, Abeer A. & Tolba, R.E., 2019. "Nonlinear dust-acoustic waves due to the interaction of streaming protons and electrons with dusty plasma," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 320-327.
    19. Chun, Changbum, 2007. "Integration using He’s homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1130-1134.
    20. Yusufoğlu (Agadjanov), Elcin, 2009. "Improved homotopy perturbation method for solving Fredholm type integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 28-37.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:2:p:849-857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.