IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1565-d1105005.html
   My bibliography  Save this article

A New Approach for Solving Nonlinear Fractional Ordinary Differential Equations

Author

Listed:
  • Hassan Kamil Jassim

    (Department of Mathematics, University of Thi-Qar, Nasiriyah 64001, Iraq)

  • Mohammed Abdulshareef Hussein

    (Scientific Research Center, Al-Ayen University, Thi-Qar 64001, Iraq
    Education Directorate of Thi-Qar, Ministry of Education, Nasiriyah 64001, Iraq
    College of Technical Engineering, National University of Science and Technology, Thi-Qar 64001, Iraq)

Abstract

Recently, researchers have been interested in studying fractional differential equations and their solutions due to the wide range of their applications in many scientific fields. In this paper, a new approach called the Hussein–Jassim (HJ) method is presented for solving nonlinear fractional ordinary differential equations. The new method is based on a power series of fractional order. The proposed approach is employed to obtain an approximate solution for the fractional differential equations. The results of this study show that the solutions obtained from solving the fractional differential equations are highly consistent with those obtained by exact solutions.

Suggested Citation

  • Hassan Kamil Jassim & Mohammed Abdulshareef Hussein, 2023. "A New Approach for Solving Nonlinear Fractional Ordinary Differential Equations," Mathematics, MDPI, vol. 11(7), pages 1-13, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1565-:d:1105005
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    2. Singh, Jagdev & Kumar, Devendra & Baleanu, Dumitru & Rathore, Sushila, 2018. "An efficient numerical algorithm for the fractional Drinfeld–Sokolov–Wilson equation," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 12-24.
    3. Singh, Jagdev & Jassim, Hassan Kamil & Kumar, Devendra, 2020. "An efficient computational technique for local fractional Fokker Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    4. Hossein Jafari & Hassan Kamil Jassim & Dumitru Baleanu & Yu-Ming Chu, 2021. "On The Approximate Solutions For A System Of Coupled Korteweg–De Vries Equations With Local Fractional Derivative," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(05), pages 1-7, August.
    5. Shun-Qin Wang & Yong-Ju Yang & Hassan Kamil Jassim, 2014. "Local Fractional Function Decomposition Method for Solving Inhomogeneous Wave Equations with Local Fractional Derivative," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-7, January.
    6. Hassan Kamil Jassim, 2015. "New Approaches for Solving Fokker Planck Equation on Cantor Sets within Local Fractional Operators," Journal of Mathematics, Hindawi, vol. 2015, pages 1-8, December.
    7. Hassan Kamil Jassim & Mohammed A. Hussein, 2022. "A Novel Formulation of the Fractional Derivative with the Order α ≥ 0 and without the Singular Kernel," Mathematics, MDPI, vol. 10(21), pages 1-18, November.
    8. Sheng-Ping Yan & Hossein Jafari & Hassan Kamil Jassim, 2014. "Local Fractional Adomian Decomposition and Function Decomposition Methods for Laplace Equation within Local Fractional Operators," Advances in Mathematical Physics, Hindawi, vol. 2014, pages 1-7, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Y.D. & Zhang, W. & Zhang, Y.F. & Bi, Q.S., 2024. "Bursting oscillations in coupling Mathieu-van der Pol oscillator under parametric excitation," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Xin Song & Rui Wu, 2024. "An Efficient Numerical Method for Solving a Class of Nonlinear Fractional Differential Equations and Error Estimates," Mathematics, MDPI, vol. 12(12), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Jagdev & Jassim, Hassan Kamil & Kumar, Devendra, 2020. "An efficient computational technique for local fractional Fokker Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    2. Singh, Jagdev, 2020. "Analysis of fractional blood alcohol model with composite fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "An efficient analytical scheme with convergence analysis for computational study of local fractional Schrödinger equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 296-318.
    4. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    5. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    6. Sheng Zhang & Jiao Gao & Bo Xu, 2022. "An Integrable Evolution System and Its Analytical Solutions with the Help of Mixed Spectral AKNS Matrix Problem," Mathematics, MDPI, vol. 10(21), pages 1-16, October.
    7. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    8. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    9. Xu, Lan, 2008. "Variational approach to solitons of nonlinear dispersive K(m,n) equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 137-143.
    10. Owolabi, Kolade M., 2018. "Numerical patterns in reaction–diffusion system with the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 160-169.
    11. Suheel Abdullah Malik & Ijaz Mansoor Qureshi & Muhammad Amir & Aqdas Naveed Malik & Ihsanul Haq, 2015. "Numerical Solution to Generalized Burgers'-Fisher Equation Using Exp-Function Method Hybridized with Heuristic Computation," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    12. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Zeng, Xiping & Dai, Zhengde & Li, Donglong, 2009. "New periodic soliton solutions for the (3+1)-dimensional potential-YTSF equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 657-661.
    14. Nguyen, Lu Trong Khiem, 2015. "Modified homogeneous balance method: Applications and new solutions," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 148-155.
    15. M. Ali Akbar & Md. Nur Alam & Md. Golam Hafez, 2016. "Application of the novel (G′/G)-expansion method to construct traveling wave solutions to the positive Gardner-KP equation," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(1), pages 85-96, March.
    16. Bezziou, Mohamed & Jebril, Iqbal & Dahmani, Zoubir, 2021. "A new nonlinear duffing system with sequential fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    17. Javidi, M. & Golbabai, A., 2009. "Modified homotopy perturbation method for solving non-linear Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1408-1412.
    18. Oke Davies Adeyemo & Lijun Zhang & Chaudry Masood Khalique, 2022. "Bifurcation Theory, Lie Group-Invariant Solutions of Subalgebras and Conservation Laws of a Generalized (2+1)-Dimensional BK Equation Type II in Plasma Physics and Fluid Mechanics," Mathematics, MDPI, vol. 10(14), pages 1-46, July.
    19. Mamta Kapoor & Nehad Ali Shah & Salman Saleem & Wajaree Weera, 2022. "An Analytical Approach for Fractional Hyperbolic Telegraph Equation Using Shehu Transform in One, Two and Three Dimensions," Mathematics, MDPI, vol. 10(12), pages 1-26, June.
    20. Hussain, Akhtar & Ibrahim, Tarek F. & Birkea, Fathea M.O. & Al-Sinan, B.R. & Alotaibi, Abeer M., 2024. "Abundant analytical solutions and diverse solitonic patterns for the complex Ginzburg–Landau equation," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1565-:d:1105005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.