Continuous time random walk and diffusion with generalized fractional Poisson process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2019.123294
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
- Michael F. Shlesinger, 2017. "Origins and applications of the Montroll-Weiss continuous time random walk," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(5), pages 1-5, May.
- Ryszard Kutner & Jaume Masoliver, 2017. "The continuous time random walk, still trendy: fifty-year history, state of art and outlook," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(3), pages 1-13, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Aleksejus Kononovicius & Rytis Kazakeviv{c}ius & Bronislovas Kaulakys, 2022. "Resemblance of the power-law scaling behavior of a non-Markovian and nonlinear point processes," Papers 2205.07563, arXiv.org, revised Jul 2022.
- Davide Cocco & Massimiliano Giona, 2021. "Generalized Counting Processes in a Stochastic Environment," Mathematics, MDPI, vol. 9(20), pages 1-19, October.
- Michelitsch, Thomas M. & Polito, Federico & Riascos, Alejandro P., 2021. "On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
- Kononovicius, Aleksejus & Kazakevičius, Rytis & Kaulakys, Bronislovas, 2022. "Resemblance of the power-law scaling behavior of a non-Markovian and nonlinear point processes," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Michelitsch, Thomas M. & Polito, Federico & Riascos, Alejandro P., 2021. "On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
- Edgardo Alvarez & Carlos Lizama, 2020. "The Super-Diffusive Singular Perturbation Problem," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
- Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
- Soma Dhar & Lipi B. Mahanta & Kishore Kumar Das, 2019. "Formulation Of The Simple Markovian Model Using Fractional Calculus Approach And Its Application To Analysis Of Queue Behaviour Of Severe Patients," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 117-129, March.
- Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
- Katarzyna Górska & Andrzej Horzela, 2021. "Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character," Mathematics, MDPI, vol. 9(5), pages 1-13, February.
- Josiah D. Cleland & Martin A. K. Williams, 2022. "Analytical Investigations into Anomalous Diffusion Driven by Stress Redistribution Events: Consequences of Lévy Flights," Mathematics, MDPI, vol. 10(18), pages 1-13, September.
- Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
- Goswami, Koushik, 2021. "Work fluctuations in a generalized Gaussian active bath," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
- Virginia Kiryakova, 2021. "A Guide to Special Functions in Fractional Calculus," Mathematics, MDPI, vol. 9(1), pages 1-40, January.
- Murat A. Sultanov & Durdimurod K. Durdiev & Askar A. Rahmonov, 2021. "Construction of an Explicit Solution of a Time-Fractional Multidimensional Differential Equation," Mathematics, MDPI, vol. 9(17), pages 1-12, August.
- Vieira, N. & Ferreira, M. & Rodrigues, M.M., 2022. "Time-fractional telegraph equation with ψ-Hilfer derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Iomin, A. & Zaburdaev, V. & Pfohl, T., 2016. "Reaction front propagation of actin polymerization in a comb-reaction system," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 115-122.
- Sánchez, Ewin, 2019. "Burr type-XII as a superstatistical stationary distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 443-446.
- Serkan Araci & Gauhar Rahman & Abdul Ghaffar & Azeema & Kottakkaran Sooppy Nisar, 2019. "Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution," Mathematics, MDPI, vol. 7(3), pages 1-14, March.
- Charles K. Amponsah & Tomasz J. Kozubowski & Anna K. Panorska, 2021. "A general stochastic model for bivariate episodes driven by a gamma sequence," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-31, December.
- Iomin, A., 2016. "Quantum continuous time random walk in nonlinear Schrödinger equation with disorder," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 64-70.
- Paekivi, Sander & Mankin, Romi, 2019. "Bimodality of the interspike interval distributions for subordinated diffusion models of integrate-and-fire neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
- Najma Ahmed & Nehad Ali Shah & Farman Ali & Dumitru Vieru & F.D. Zaman, 2021. "Analytical Solutions of the Fractional Mathematical Model for the Concentration of Tumor Cells for Constant Killing Rate," Mathematics, MDPI, vol. 9(10), pages 1-14, May.
- Arkashov, N.S., 2022. "On the model of random walk with multiple memory structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
More about this item
Keywords
Renewal process; Fractional Poisson process and distribution; Fractional Kolmogorov–Feller equation; Continuous time random walk; Generalized fractional diffusion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119318461. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.