IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v162y2022ics0960077922004866.html
   My bibliography  Save this article

Time-fractional telegraph equation with ψ-Hilfer derivatives

Author

Listed:
  • Vieira, N.
  • Ferreira, M.
  • Rodrigues, M.M.

Abstract

This paper deals with the investigation of the solution of the time-fractional telegraph equation in higher dimensions with ψ-Hilfer fractional derivatives. By application of the Fourier and ψ-Laplace transforms the solution is derived in closed form in terms of bivariate Mittag-Leffler functions in the Fourier domain and in terms of convolution integrals involving Fox H-functions of two-variables in the space-time domain. A double series representation of the first fundamental solution is deduced for the case of odd dimension. The results derived here are of general nature since our fractional derivatives allow to interpolate between Riemann-Liouville and Caputo fractional derivatives and the use of an arbitrary positive monotone increasing function ψ in the kernel allows to encompass most of the fractional derivatives in the literature. In the one dimensional case, we prove the conditions under which the first fundamental solution of our equation can be interpreted as a spatial probability density function evolving in time, generalizing the results of Orsingher and Beghin (2004). Some plots of the fundamental solutions for different fractional derivatives are presented and analysed, and particular cases are addressed to show the consistency of our results.

Suggested Citation

  • Vieira, N. & Ferreira, M. & Rodrigues, M.M., 2022. "Time-fractional telegraph equation with ψ-Hilfer derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922004866
    DOI: 10.1016/j.chaos.2022.112276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922004866
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112276?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacek Banasiak & Janusz R. Mika, 1998. "Singularly perturbed telegraph equations with applications in the random walk theory," International Journal of Stochastic Analysis, Hindawi, vol. 11, pages 1-20, January.
    2. Enzo Orsingher & Bruno Toaldo, 2017. "Space–Time Fractional Equations and the Related Stable Processes at Random Time," Journal of Theoretical Probability, Springer, vol. 30(1), pages 1-26, March.
    3. Singh, Jagdev, 2020. "Analysis of fractional blood alcohol model with composite fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edgardo Alvarez & Carlos Lizama, 2020. "The Super-Diffusive Singular Perturbation Problem," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    2. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    3. Soma Dhar & Lipi B. Mahanta & Kishore Kumar Das, 2019. "Formulation Of The Simple Markovian Model Using Fractional Calculus Approach And Its Application To Analysis Of Queue Behaviour Of Severe Patients," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 117-129, March.
    4. Bezziou, Mohamed & Jebril, Iqbal & Dahmani, Zoubir, 2021. "A new nonlinear duffing system with sequential fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    6. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    7. Katarzyna Górska & Andrzej Horzela, 2021. "Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character," Mathematics, MDPI, vol. 9(5), pages 1-13, February.
    8. Izadi, Mohammad & Srivastava, H.M., 2021. "Numerical approximations to the nonlinear fractional-order Logistic population model with fractional-order Bessel and Legendre bases," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
    10. Goswami, Koushik, 2021. "Work fluctuations in a generalized Gaussian active bath," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    11. Virginia Kiryakova, 2021. "A Guide to Special Functions in Fractional Calculus," Mathematics, MDPI, vol. 9(1), pages 1-40, January.
    12. Murat A. Sultanov & Durdimurod K. Durdiev & Askar A. Rahmonov, 2021. "Construction of an Explicit Solution of a Time-Fractional Multidimensional Differential Equation," Mathematics, MDPI, vol. 9(17), pages 1-12, August.
    13. Iomin, A. & Zaburdaev, V. & Pfohl, T., 2016. "Reaction front propagation of actin polymerization in a comb-reaction system," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 115-122.
    14. Sánchez, Ewin, 2019. "Burr type-XII as a superstatistical stationary distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 443-446.
    15. Jagdev Singh & Ahmed M. Alshehri & Shaher Momani & Samir Hadid & Devendra Kumar, 2022. "Computational Analysis of Fractional Diffusion Equations Occurring in Oil Pollution," Mathematics, MDPI, vol. 10(20), pages 1-19, October.
    16. Serkan Araci & Gauhar Rahman & Abdul Ghaffar & Azeema & Kottakkaran Sooppy Nisar, 2019. "Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution," Mathematics, MDPI, vol. 7(3), pages 1-14, March.
    17. Charles K. Amponsah & Tomasz J. Kozubowski & Anna K. Panorska, 2021. "A general stochastic model for bivariate episodes driven by a gamma sequence," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-31, December.
    18. Iomin, A., 2016. "Quantum continuous time random walk in nonlinear Schrödinger equation with disorder," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 64-70.
    19. Najma Ahmed & Nehad Ali Shah & Farman Ali & Dumitru Vieru & F.D. Zaman, 2021. "Analytical Solutions of the Fractional Mathematical Model for the Concentration of Tumor Cells for Constant Killing Rate," Mathematics, MDPI, vol. 9(10), pages 1-14, May.
    20. Hainaut, Donatien, 2021. "Lévy interest rate models with a long memory," LIDAM Discussion Papers ISBA 2021020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922004866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.