IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3235-d908432.html
   My bibliography  Save this article

Analytical Investigations into Anomalous Diffusion Driven by Stress Redistribution Events: Consequences of Lévy Flights

Author

Listed:
  • Josiah D. Cleland

    (School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
    Riddet Institute, Palmerston North 4474, New Zealand)

  • Martin A. K. Williams

    (School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
    Riddet Institute, Palmerston North 4474, New Zealand
    The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand)

Abstract

This research is concerned with developing a generalised diffusion equation capable of describing diffusion processes driven by underlying stress-redistributing type events. The work utilises the development of an appropriate continuous time random walk framework as a foundation to consider a new generalised diffusion equation. While previous work has explored the resulting generalised diffusion equation for jump-timings motivated by stick-slip physics, here non-Gaussian probability distributions of the jump displacements are also considered, specifically Lévy flights. This work illuminates several features of the analytic solution to such a generalised diffusion equation using several known properties of the Fox H function. Specifically demonstrated are the temporal behaviour of the resulting position probability density function, and its normalisation. The reduction of the proposed form to expected known solutions upon the insertion of simplifying parameter values, as well as a demonstration of asymptotic behaviours, is undertaken to add confidence to the validity of this equation. This work describes the analytical solution of such a generalised diffusion equation for the first time, and additionally demonstrates the capacity of the Fox H function and its properties in solving and studying generalised Fokker–Planck equations.

Suggested Citation

  • Josiah D. Cleland & Martin A. K. Williams, 2022. "Analytical Investigations into Anomalous Diffusion Driven by Stress Redistribution Events: Consequences of Lévy Flights," Mathematics, MDPI, vol. 10(18), pages 1-13, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3235-:d:908432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael F. Shlesinger, 2017. "Origins and applications of the Montroll-Weiss continuous time random walk," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(5), pages 1-5, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zachary R. Fox & Eli Barkai & Diego Krapf, 2021. "Aging power spectrum of membrane protein transport and other subordinated random walks," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Michelitsch, Thomas M. & Riascos, Alejandro P., 2020. "Continuous time random walk and diffusion with generalized fractional Poisson process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3235-:d:908432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.