IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v175y2016icp109-127.html
   My bibliography  Save this article

Fluctuation behavior analysis of international crude oil and gasoline price based on complex network perspective

Author

Listed:
  • Wang, Minggang
  • Chen, Ying
  • Tian, Lixin
  • Jiang, Shumin
  • Tian, Zihao
  • Du, Ruijin

Abstract

The directed weighted networks of international crude oil and gasoline price were built in the different fluctuation periods. And then the evolution law of the new nodes in the prices networks was analyzed. The results indicated that the cumulative times of the new nodes that appeared in the crude oil and gasoline prices networks were not random but exhibited a high linear growth trend, which revealed the linear characteristics of the accumulation time of abnormal points that appeared in the process of oil price fluctuations. Based on the node strength, the calculation formula of the network similarity between the crude oil and gasoline price networks was designed, and the interdependence between the crude oil and gasoline price fluctuations was calculated, the results indicated that there was a strong interdependence between crude oil and gasoline prices in stable fluctuation periods, but the degree of dependence was significantly reduced in sharp fluctuation periods. The strength of nodes and their strength distribution, weighted clustering coefficient, and average shortest paths of the price network in different periods were calculated. The fluctuation characteristics in different periods were comparatively analyzed. The core fluctuation status and the conversion relationship between them in different periods were revealed. Finally, the important modes of price fluctuations of crude oil and gasoline were identified and the distribution characteristics of the time these modes appeared were studied.

Suggested Citation

  • Wang, Minggang & Chen, Ying & Tian, Lixin & Jiang, Shumin & Tian, Zihao & Du, Ruijin, 2016. "Fluctuation behavior analysis of international crude oil and gasoline price based on complex network perspective," Applied Energy, Elsevier, vol. 175(C), pages 109-127.
  • Handle: RePEc:eee:appene:v:175:y:2016:i:c:p:109-127
    DOI: 10.1016/j.apenergy.2016.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916305943
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coleman, Les, 2012. "Explaining crude oil prices using fundamental measures," Energy Policy, Elsevier, vol. 40(C), pages 318-324.
    2. M. E. J. Newman & D. J. Watts, 1999. "Renormalization Group Analysis of the Small-World Network Model," Working Papers 99-04-029, Santa Fe Institute.
    3. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    4. An, Haizhong & Gao, Xiangyun & Fang, Wei & Huang, Xuan & Ding, Yinghui, 2014. "The role of fluctuating modes of autocorrelation in crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 382-390.
    5. repec:ipg:wpaper:2014-569 is not listed on IDEAS
    6. Atil, Ahmed & Lahiani, Amine & Nguyen, Duc Khuong, 2014. "Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices," Energy Policy, Elsevier, vol. 65(C), pages 567-573.
    7. Chiroma, Haruna & Abdulkareem, Sameem & Herawan, Tutut, 2015. "Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction," Applied Energy, Elsevier, vol. 142(C), pages 266-273.
    8. An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.
    9. Gao, Cuixia & Sun, Mei & Shen, Bo, 2015. "Features and evolution of international fossil energy trade relationships: A weighted multilayer network analysis," Applied Energy, Elsevier, vol. 156(C), pages 542-554.
    10. Huang, Xuan & An, Haizhong & Gao, Xiangyun & Hao, Xiaoqing & Liu, Pengpeng, 2015. "Multiresolution transmission of the correlation modes between bivariate time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 493-506.
    11. Koirala, Krishna H. & Mishra, Ashok K. & D'Antoni, Jeremy M. & Mehlhorn, Joey E., 2015. "Energy prices and agricultural commodity prices: Testing correlation using copulas method," Energy, Elsevier, vol. 81(C), pages 430-436.
    12. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    13. Zhang, Yue-Jun & Wang, Zi-Yi, 2013. "Investigating the price discovery and risk transfer functions in the crude oil and gasoline futures markets: Some empirical evidence," Applied Energy, Elsevier, vol. 104(C), pages 220-228.
    14. Zhong, Weiqiong & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2014. "The evolution of communities in the international oil trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 42-52.
    15. An, Haizhong & Zhong, Weiqiong & Chen, Yurong & Li, Huajiao & Gao, Xiangyun, 2014. "Features and evolution of international crude oil trade relationships: A trading-based network analysis," Energy, Elsevier, vol. 74(C), pages 254-259.
    16. Nazlioglu, Saban & Soytas, Ugur & Gupta, Rangan, 2015. "Oil prices and financial stress: A volatility spillover analysis," Energy Policy, Elsevier, vol. 82(C), pages 278-288.
    17. Narayan, Paresh Kumar & Narayan, Seema & Popp, Stephan, 2011. "Investigating price clustering in the oil futures market," Applied Energy, Elsevier, vol. 88(1), pages 397-402, January.
    18. Gao, Xiangyun & An, Haizhong & Fang, Wei & Li, Huajiao & Sun, Xiaoqi, 2014. "The transmission of fluctuant patterns of the forex burden based on international crude oil prices," Energy, Elsevier, vol. 73(C), pages 380-386.
    19. Dias, José G. & Ramos, Sofia B., 2014. "Energy price dynamics in the U.S. market. Insights from a heterogeneous multi-regime framework," Energy, Elsevier, vol. 68(C), pages 327-336.
    20. Chai, Jian & Guo, Ju-E. & Meng, Lei & Wang, Shou-Yang, 2011. "Exploring the core factors and its dynamic effects on oil price: An application on path analysis and BVAR-TVP model," Energy Policy, Elsevier, vol. 39(12), pages 8022-8036.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Huajiao & An, Haizhong & Liu, Xueyong & Gao, Xiangyun & Fang, Wei & An, Feng, 2016. "Price fluctuation in the energy stock market based on fluctuation and co-fluctuation matrix transmission networks," Energy, Elsevier, vol. 117(P1), pages 73-83.
    2. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "The roles of countries in the international fossil fuel trade: An emergy and network analysis," Energy Policy, Elsevier, vol. 100(C), pages 365-376.
    3. Xi, Xian & Zhou, Jinsheng & Gao, Xiangyun & Liu, Donghui & Zheng, Huiling & Sun, Qingru, 2019. "Impact of changes in crude oil trade network patterns on national economy," Energy Economics, Elsevier, vol. 84(C).
    4. Sun, Qingru & Gao, Xiangyun & Zhong, Weiqiong & Liu, Nairong, 2017. "The stability of the international oil trade network from short-term and long-term perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 345-356.
    5. An, Qier & An, Haizhong & Wang, Lang & Gao, Xiangyun & Lv, Na, 2015. "Analysis of embodied exergy flow between Chinese industries based on network theory," Ecological Modelling, Elsevier, vol. 318(C), pages 26-35.
    6. Jia, Xiaoliang & An, Haizhong & Sun, Xiaoqi & Huang, Xuan & Wang, Lijun, 2017. "Evolution of world crude oil market integration and diversification: A wavelet-based complex network perspective," Applied Energy, Elsevier, vol. 185(P2), pages 1788-1798.
    7. Shi, Jianglan & Li, Huajiao & Guan, Jianhe & Sun, Xiaoqi & Guan, Qing & Liu, Xiaojia, 2017. "Evolutionary features of global embodied energy flow between sectors: A complex network approach," Energy, Elsevier, vol. 140(P1), pages 395-405.
    8. Kitamura, Toshihiko & Managi, Shunsuke, 2017. "Driving force and resistance: Network feature in oil trade," Applied Energy, Elsevier, vol. 208(C), pages 361-375.
    9. Huan Chen & Lixin Tian & Minggang Wang & Zaili Zhen, 2017. "Analysis of the Dynamic Evolutionary Behavior of American Heating Oil Spot and Futures Price Fluctuation Networks," Sustainability, MDPI, vol. 9(4), pages 1-29, April.
    10. An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.
    11. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    12. Sofia Berdysheva & Svetlana Ikonnikova, 2021. "The Energy Transition and Shifts in Fossil Fuel Use: The Study of International Energy Trade and Energy Security Dynamics," Energies, MDPI, vol. 14(17), pages 1-26, August.
    13. Gao, Xiangyun & Fang, Wei & An, Feng & Wang, Yue, 2017. "Detecting method for crude oil price fluctuation mechanism under different periodic time series," Applied Energy, Elsevier, vol. 192(C), pages 201-212.
    14. Sun, Xiaoqi & An, Haizhong & Gao, Xiangyun & Jia, Xiaoliang & Liu, Xiaojia, 2016. "Indirect energy flow between industrial sectors in China: A complex network approach," Energy, Elsevier, vol. 94(C), pages 195-205.
    15. Wang, Wenya & Fan, L.W. & Zhou, P., 2022. "Evolution of global fossil fuel trade dependencies," Energy, Elsevier, vol. 238(PC).
    16. An, Pengli & Li, Huajiao & Zhou, Jinsheng & Chen, Fan, 2017. "The evolution analysis of listed companies co-holding non-listed financial companies based on two-mode heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 558-568.
    17. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Huang, Xuan, 2016. "Time–frequency featured co-movement between the stock and prices of crude oil and gold," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 985-995.
    18. Peng, Peng & Yang, Yu & Cheng, Shifen & Lu, Feng & Yuan, Zimu, 2019. "Hub-and-spoke structure: Characterizing the global crude oil transport network with mass vessel trajectories," Energy, Elsevier, vol. 168(C), pages 966-974.
    19. Li, Huajiao & An, Haizhong & Huang, Jiachen & Huang, Xuan & Mou, Songtao & Shi, Yanli, 2016. "The evolutionary stability of shareholders’ co-holding behavior for China’s listed energy companies based on associated maximal connected sub-graphs of derivative holding-based networks," Applied Energy, Elsevier, vol. 162(C), pages 1601-1607.
    20. Liu, Xueyong & An, Haizhong & Li, Huajiao & Chen, Zhihua & Feng, Sida & Wen, Shaobo, 2017. "Features of spillover networks in international financial markets: Evidence from the G20 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 265-278.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:175:y:2016:i:c:p:109-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.