IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v492y2018icp1097-1106.html
   My bibliography  Save this article

The parametric modified limited penetrable visibility graph for constructing complex networks from time series

Author

Listed:
  • Li, Xiuming
  • Sun, Mei
  • Gao, Cuixia
  • Han, Dun
  • Wang, Minggang

Abstract

This paper presents the parametric modified limited penetrable visibility graph (PMLPVG) algorithm for constructing complex networks from time series. We modify the penetrable visibility criterion of limited penetrable visibility graph (LPVG) in order to improve the rationality of the original penetrable visibility and preserve the dynamic characteristics of the time series. The addition of view angle provides a new approach to characterize the dynamic structure of the time series that is invisible in the previous algorithm. The reliability of the PMLPVG algorithm is verified by applying it to three types of artificial data as well as the actual data of natural gas prices in different regions. The empirical results indicate that PMLPVG algorithm can distinguish the different time series from each other. Meanwhile, the analysis results of natural gas prices data using PMLPVG are consistent with the detrended fluctuation analysis (DFA). The results imply that the PMLPVG algorithm may be a reasonable and significant tool for identifying various time series in different fields.

Suggested Citation

  • Li, Xiuming & Sun, Mei & Gao, Cuixia & Han, Dun & Wang, Minggang, 2018. "The parametric modified limited penetrable visibility graph for constructing complex networks from time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1097-1106.
  • Handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:1097-1106
    DOI: 10.1016/j.physa.2017.11.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117311160
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.11.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Xuan & Shi, Suixiang & Xu, Lingyu & Yu, Jie & Liu, Yaya, 2020. "Analyzing dynamic association of multivariate time series based on method of directed limited penetrable visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Wang, Minggang & Hua, Chenyu & Zhu, Mengrui & Xie, Shangshan & Xu, Hua & Vilela, André L.M. & Tian, Lixin, 2022. "Interrelation measurement based on the multi-layer limited penetrable horizontal visibility graph," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:1097-1106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.