IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v66y2020ics0301420719309419.html
   My bibliography  Save this article

Dynamic volatility spillovers among bulk mineral commodities: A network method

Author

Listed:
  • An, Sufang
  • Gao, Xiangyun
  • An, Haizhong
  • Liu, Siyao
  • Sun, Qingru
  • Jia, Nanfei

Abstract

The volatility spillover effects among bulk mineral commodities is an important and hot issue in mineral resource policy. This paper applies a network theory approach that incorporates a bivariate spillover model to establish a bulk mineral spillover network that can not only reveal the structure of magnitude and direction of spillovers across nineteen bulk mineral futures prices but can also investigate their dynamic evolutionary process. Our findings indicate that the structure of a network changes with time. In general, an energy bulk mineral commodity such as natural gas acts as the net highest spillover transmitter, while an industries metal commodity such as U.S. Steel acts as the net highest spillover receiver. The overall structure of a network indicates that there are a few spillover flows across bulk mineral markets in which any market tends to have more spillovers among interconnected groups of neighbors. Although the overall structure became complex during the European debt and oil crisis collapses of 2014–2016, it has been simple since the end of 2017 when its range of fluctuation increased. Our research not only provides a process orientation to explore the nonlinear dynamic process of spillovers across markets but also offers important implications for the pricing mechanics of bulk mineral-related products and market management.

Suggested Citation

  • An, Sufang & Gao, Xiangyun & An, Haizhong & Liu, Siyao & Sun, Qingru & Jia, Nanfei, 2020. "Dynamic volatility spillovers among bulk mineral commodities: A network method," Resources Policy, Elsevier, vol. 66(C).
  • Handle: RePEc:eee:jrpoli:v:66:y:2020:i:c:s0301420719309419
    DOI: 10.1016/j.resourpol.2020.101613
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420719309419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2020.101613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Karali, Berna & Ramirez, Octavio A., 2014. "Macro determinants of volatility and volatility spillover in energy markets," Energy Economics, Elsevier, vol. 46(C), pages 413-421.
    3. M. E. J. Newman & D. J. Watts, 1999. "Renormalization Group Analysis of the Small-World Network Model," Working Papers 99-04-029, Santa Fe Institute.
    4. Rossen, Anja, 2015. "What are metal prices like? Co-movement, price cycles and long-run trends," Resources Policy, Elsevier, vol. 45(C), pages 255-276.
    5. Ahmadi, Maryam & Bashiri Behmiri, Niaz & Manera, Matteo, 2016. "How is volatility in commodity markets linked to oil price shocks?," Energy Economics, Elsevier, vol. 59(C), pages 11-23.
    6. John Beirne & Guglielmo Maria Caporale & Marianne Schulze-Ghattas & Nicola Spagnolo, 2013. "Volatility Spillovers and Contagion from Mature to Emerging Stock Markets," Review of International Economics, Wiley Blackwell, vol. 21(5), pages 1060-1075, November.
    7. Liu, Xueyong & An, Haizhong & Huang, Shupei & Wen, Shaobo, 2017. "The evolution of spillover effects between oil and stock markets across multi-scales using a wavelet-based GARCH–BEKK model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 374-383.
    8. Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Commodity Connectedness," Central Banking, Analysis, and Economic Policies Book Series, in: Enrique G. Mendoza & Ernesto Pastén & Diego Saravia (ed.),Monetary Policy and Global Spillovers: Mechanisms, Effects and Policy Measures, edition 1, volume 25, chapter 4, pages 097-136, Central Bank of Chile.
    9. Zhang, Hai-Ying & Ji, Qiang & Fan, Ying, 2014. "Competition, transmission and pattern evolution: A network analysis of global oil trade," Energy Policy, Elsevier, vol. 73(C), pages 312-322.
    10. Li, Huajiao & An, Haizhong & Liu, Xueyong & Gao, Xiangyun & Fang, Wei & An, Feng, 2016. "Price fluctuation in the energy stock market based on fluctuation and co-fluctuation matrix transmission networks," Energy, Elsevier, vol. 117(P1), pages 73-83.
    11. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2010. "The macroeconomic determinants of volatility in precious metals markets," Resources Policy, Elsevier, vol. 35(2), pages 65-71, June.
    12. Hammoudeh, Shawkat & Yuan, Yuan, 2008. "Metal volatility in presence of oil and interest rate shocks," Energy Economics, Elsevier, vol. 30(2), pages 606-620, March.
    13. Khalfaoui, R. & Boutahar, M. & Boubaker, H., 2015. "Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis," Energy Economics, Elsevier, vol. 49(C), pages 540-549.
    14. Ma, Yan-Ran & Zhang, Dayong & Ji, Qiang & Pan, Jiaofeng, 2019. "Spillovers between oil and stock returns in the US energy sector: Does idiosyncratic information matter?," Energy Economics, Elsevier, vol. 81(C), pages 536-544.
    15. Reboredo, Juan C., 2014. "Volatility spillovers between the oil market and the European Union carbon emission market," Economic Modelling, Elsevier, vol. 36(C), pages 229-234.
    16. Gao, Xiangyun & Fang, Wei & An, Feng & Wang, Yue, 2017. "Detecting method for crude oil price fluctuation mechanism under different periodic time series," Applied Energy, Elsevier, vol. 192(C), pages 201-212.
    17. Uddin, Gazi Salah & Hernandez, Jose Areola & Shahzad, Syed Jawad Hussain & Hedström, Axel, 2018. "Multivariate dependence and spillover effects across energy commodities and diversification potentials of carbon assets," Energy Economics, Elsevier, vol. 71(C), pages 35-46.
    18. Balli, Faruk & Naeem, Muhammad Abubakr & Shahzad, Syed Jawad Hussain & de Bruin, Anne, 2019. "Spillover network of commodity uncertainties," Energy Economics, Elsevier, vol. 81(C), pages 914-927.
    19. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    20. Ji, Qiang & Geng, Jiang-Bo & Tiwari, Aviral Kumar, 2018. "Information spillovers and connectedness networks in the oil and gas markets," Energy Economics, Elsevier, vol. 75(C), pages 71-84.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An, Sufang & Gao, Xiangyun & An, Haizhong & An, Feng & Sun, Qingru & Liu, Siyao, 2020. "Windowed volatility spillover effects among crude oil prices," Energy, Elsevier, vol. 200(C).
    2. An, Pengli & Li, Huajiao & Zhou, Jinsheng & Li, Yang & Sun, Bowen & Guo, Sui & Qi, Yajie, 2020. "Volatility spillover of energy stocks in different periods and clusters based on structural break recognition and network method," Energy, Elsevier, vol. 191(C).
    3. Liu, Xueyong & An, Haizhong & Li, Huajiao & Chen, Zhihua & Feng, Sida & Wen, Shaobo, 2017. "Features of spillover networks in international financial markets: Evidence from the G20 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 265-278.
    4. Feng, Sida & Huang, Shupei & Qi, Yabin & Liu, Xueyong & Sun, Qingru & Wen, Shaobo, 2018. "Network features of sector indexes spillover effects in China: A multi-scale view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 461-473.
    5. Ahmed, Abdullahi D. & Huo, Rui, 2021. "Volatility transmissions across international oil market, commodity futures and stock markets: Empirical evidence from China," Energy Economics, Elsevier, vol. 93(C).
    6. Mehmet Balcilar & Ojonugwa Usman & Busra Agan, 2024. "On the connectedness of commodity markets: A critical and selective survey of empirical studies and bibliometric analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 38(1), pages 97-136, February.
    7. Asl, Mahdi Ghaemi & Canarella, Giorgio & Miller, Stephen M., 2021. "Dynamic asymmetric optimal portfolio allocation between energy stocks and energy commodities: Evidence from clean energy and oil and gas companies," Resources Policy, Elsevier, vol. 71(C).
    8. Sun, Guanglin & Li, Jianfeng & Shang, Zezhong, 2022. "Return and volatility linkages between international energy markets and Chinese commodity market," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    9. Muhammad Abubakr Naeem & Saqib Farid & Safwan Mohd Nor & Syed Jawad Hussain Shahzad, 2021. "Spillover and Drivers of Uncertainty among Oil and Commodity Markets," Mathematics, MDPI, vol. 9(4), pages 1-26, February.
    10. James Ming Chen & Mobeen Ur Rehman, 2021. "A Pattern New in Every Moment: The Temporal Clustering of Markets for Crude Oil, Refined Fuels, and Other Commodities," Energies, MDPI, vol. 14(19), pages 1-58, September.
    11. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
    12. Li, Yu & Gao, Xiangyun & An, Sufang & Zheng, Huiling & Wu, Tao, 2021. "Network approach to the dynamic transformation characteristics of the joint impacts of gold and oil on copper," Resources Policy, Elsevier, vol. 70(C).
    13. Ahmed, Rizwan & Chaudhry, Sajid M. & Kumpamool, Chamaiporn & Benjasak, Chonlakan, 2022. "Tail risk, systemic risk and spillover risk of crude oil and precious metals," Energy Economics, Elsevier, vol. 112(C).
    14. Liu, Xueyong & An, Haizhong & Huang, Shupei & Wen, Shaobo, 2017. "The evolution of spillover effects between oil and stock markets across multi-scales using a wavelet-based GARCH–BEKK model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 374-383.
    15. Silva, Thiago Christiano & Braz, Tercio & Tabak, Benjamin Miranda, 2024. "Mapping the landscape of energy markets research: A bibliometric analysis and predictive assessment using machine learning," Energy Economics, Elsevier, vol. 136(C).
    16. Chen, Yufeng & Qu, Fang, 2019. "Leverage effect and dynamics correlation between international crude oil and China’s precious metals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    17. Juncal Cunado & David Gabauer & Rangan Gupta, 2024. "Realized volatility spillovers between energy and metal markets: a time-varying connectedness approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-17, December.
    18. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    19. Green, Rikard & Larsson, Karl & Lunina, Veronika & Nilsson, Birger, 2018. "Cross-commodity news transmission and volatility spillovers in the German energy markets," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 231-243.
    20. Chen, Weidong & Xiong, Shi & Chen, Quanyu, 2022. "Characterizing the dynamic evolutionary behavior of multivariate price movement fluctuation in the carbon-fuel energy markets system from complex network perspective," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:66:y:2020:i:c:s0301420719309419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.