IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v537y2020ics0378437119315766.html
   My bibliography  Save this article

Epidemic spreading on midscopic multi-layer network with optimal control mechanism

Author

Listed:
  • Liu, Yujing
  • Ding, Li
  • An, Xuming
  • Hu, Ping
  • Du, Fuying

Abstract

In this paper, an SIS-based model on heterogeneity, midscopic multi-layer network combining the inter-layer topology with the intra-layer statistical property is proposed. We discuss the global stability of disease-free and endemic equilibrium of the model. Then the dynamic optimization problem of epidemic spreading on multi-layer network is studied considering the heterogeneity of layers. An explicit expression of the optimal solutions is presented in the case where the interaction radius of intra-layer individual is heterogeneous. Numerical simulations are performed to illustrate the obtained theoretical results. It is proved that the optimal control mechanism can effectively minimize specific objective function. Meanwhile, the dynamics of sub-costs is constructed as the cost coefficients varying. Our findings reveal the necessity of studying midscopic networks and demonstrate the underlying interrelationship between individuals behavioral responses and spreading process on multi-layer network.

Suggested Citation

  • Liu, Yujing & Ding, Li & An, Xuming & Hu, Ping & Du, Fuying, 2020. "Epidemic spreading on midscopic multi-layer network with optimal control mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
  • Handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119315766
    DOI: 10.1016/j.physa.2019.122775
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119315766
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael McAsey & Libin Mou & Weimin Han, 2012. "Convergence of the forward-backward sweep method in optimal control," Computational Optimization and Applications, Springer, vol. 53(1), pages 207-226, September.
    2. Zhou, Jie & Liu, Zonghua, 2009. "Epidemic spreading in communities with mobile agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1228-1236.
    3. Feng, Yun & Ding, Li & Huang, Yun-Han & Zhang, Li, 2016. "Epidemic spreading on weighted networks with adaptive topology based on infective information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 493-502.
    4. Li, Tao & Liu, Xiongding & Wu, Jie & Wan, Chen & Guan, Zhi-Hong & Wang, Yuanmei, 2016. "An epidemic spreading model on adaptive scale-free networks with feedback mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 649-656.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jingwei & Li, Shouwei, 2023. "Immunization of systemic risk in trade–investment networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiongding & Li, Tao & Xu, Hao & Liu, Wenjin, 2019. "Spreading dynamics of an online social information model on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 497-510.
    2. Alessandro Ramponi & Maria Elisabetta Tessitore, 2024. "Optimal Social and Vaccination Control in the SVIR Epidemic Model," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
    3. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    4. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    5. La Torre, Davide & Liuzzi, Danilo & Marsiglio, Simone, 2021. "Epidemics and macroeconomic outcomes: Social distancing intensity and duration," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    6. Wan, Chen & Li, Tao & Zhang, Wu & Dong, Jing, 2018. "Dynamics of epidemic spreading model with drug-resistant variation on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 17-28.
    7. Liu, Fangzhou & Zhang, Zengjie & Buss, Martin, 2019. "Robust optimal control of deterministic information epidemics with noisy transition rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 577-587.
    8. Wang, Yan & Song, Qiao-Zhen, 2017. "Navigability of multiplex temporal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 115-123.
    9. Akinlotan, Morenikeji Deborah & Mallet, Daniel G. & Araujo, Robyn P., 2020. "An optimal control model of the treatment of chronic Chlamydia trachomatis infection using a combination treatment with antibiotic and tryptophan," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    10. Torre, Davide La & Liuzzi, Danilo & Marsiglio, Simone, 2021. "Transboundary pollution externalities: Think globally, act locally?," Journal of Mathematical Economics, Elsevier, vol. 96(C).
    11. Ventura, Paulo Cesar & Aleta, Alberto & Rodrigues, Francisco A. & Moreno, Yamir, 2022. "Epidemic spreading in populations of mobile agents with adaptive behavioral response," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    12. Tian, Xiaohong & Xu, Rui & Lin, Jiazhe, 2019. "Mathematical analysis of a cholera infection model with vaccination strategy," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 517-535.
    13. Alessandro Ramponi & Maria Elisabetta Tessitore, 2022. "The economic cost of social distancing during a pandemic: an optimal control approach in the SVIR model," Papers 2208.04908, arXiv.org.
    14. Xiaoyang Liu & Chao Liu & Xiaoping Zeng, 2017. "Online Social Network Emergency Public Event Information Propagation and Nonlinear Mathematical Modeling," Complexity, Hindawi, vol. 2017, pages 1-7, June.
    15. Yao, Yiyang & Zhou, Yinzuo, 2017. "Epidemic spreading on dual-structure networks with mobile agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 218-225.
    16. La Torre, Davide & Liuzzi, Danilo & Marsiglio, Simone, 2015. "Pollution diffusion and abatement activities across space and over time," Mathematical Social Sciences, Elsevier, vol. 78(C), pages 48-63.
    17. Wang, Jinling & Jiang, Haijun & Hu, Cheng & Yu, Zhiyong & Li, Jiarong, 2021. "Stability and Hopf bifurcation analysis of multi-lingual rumor spreading model with nonlinear inhibition mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    18. Bruno Buonomo, 2015. "Modeling ITNs Usage: Optimal Promotion Programs Versus Pure Voluntary Adoptions," Mathematics, MDPI, vol. 3(4), pages 1-14, December.
    19. Li, Ruqi & Song, Yurong & Wang, Haiyan & Jiang, Guo-Ping & Xiao, Min, 2023. "Reactive–diffusion epidemic model on human mobility networks: Analysis and applications to COVID-19 in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    20. Fu, Minglei & Yang, Hongbo & Feng, Jun & Guo, Wen & Le, Zichun & Lande, Dmytro & Manko, Dmytro, 2018. "Preferential information dynamics model for online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 993-1005.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119315766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.