IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v514y2019icp497-510.html
   My bibliography  Save this article

Spreading dynamics of an online social information model on scale-free networks

Author

Listed:
  • Liu, Xiongding
  • Li, Tao
  • Xu, Hao
  • Liu, Wenjin

Abstract

In order to study the influence of the comment mechanism and the heterogeneity of underlying networks on the spreading of online social information, we present a new ICST (ignoramus-commentator-sharer-stifler) online social information spreading model based on scale-free networks. By using the mean-field theory, the spreading dynamics of the model is analyzed in detail. Then, the basic reproductive number R0 and equilibriums are derived. Theoretical results show that the basic reproduction number is significantly dependent on the topology of the underlying networks. The relationships among the basic reproduction number R0, sharing rate, effective comment rate are studied. Furthermore, the global stability of the information-elimination equilibrium, the permanence of online social information spreading and the global attractivity of information-prevailing equilibrium are proved in detail. In addition, we study the influence of weight in networks and analyze the corresponding of dynamics behaviors. The adaptive weight cannot change the basic reproductive number, but it can weaken the information spreading. Numerical simulations confirmed the analytical results.

Suggested Citation

  • Liu, Xiongding & Li, Tao & Xu, Hao & Liu, Wenjin, 2019. "Spreading dynamics of an online social information model on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 497-510.
  • Handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:497-510
    DOI: 10.1016/j.physa.2018.09.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118312172
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Tao & He, Juanjuan & Wang, Xiaoxia, 2018. "An information spreading model based on online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 488-496.
    2. Chu, Xiangwei & Zhang, Zhongzhi & Guan, Jihong & Zhou, Shuigeng, 2011. "Epidemic spreading with nonlinear infectivity in weighted scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 471-481.
    3. Wan, Chen & Li, Tao & Guan, Zhi-Hong & Wang, Yuanmei & Liu, Xiongding, 2017. "Spreading dynamics of an e-commerce preferential information model on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 192-200.
    4. Feng, Yun & Ding, Li & Huang, Yun-Han & Zhang, Li, 2016. "Epidemic spreading on weighted networks with adaptive topology based on infective information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 493-502.
    5. Huo, Liang'an & Wang, Li & Song, Naixiang & Ma, Chenyang & He, Bing, 2017. "Rumor spreading model considering the activity of spreaders in the homogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 855-865.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    2. Cheng, Yingying & Huo, Liang’an & Zhao, Laijun, 2020. "Rumor spreading in complex networks under stochastic node activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    3. Hou, Jingrui & Chi, Ming & Li, Tao & Guan, Zhi-Hong & Luo, Kai & Zhang, Ding-Xue, 2019. "Spreading dynamics of SVFR online fraud information model on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    4. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Ding, Haixin & Xie, Li, 2023. "Simulating rumor spreading and rebuttal strategy with rebuttal forgetting: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    6. Dong, Xuefan & Lian, Ying, 2021. "A review of social media-based public opinion analyses: Challenges and recommendations," Technology in Society, Elsevier, vol. 67(C).
    7. Yanhui Wei & Liang’an Huo & Hongguang He, 2022. "Research on Rumor-Spreading Model with Holling Type III Functional Response," Mathematics, MDPI, vol. 10(4), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Liang’an & Ding, Fan & Cheng, Yingying, 2019. "Dynamic analysis of a SIbInIu, rumor spreading model in complex social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 924-932.
    2. Fu, Minglei & Yang, Hongbo & Feng, Jun & Guo, Wen & Le, Zichun & Lande, Dmytro & Manko, Dmytro, 2018. "Preferential information dynamics model for online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 993-1005.
    3. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    4. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    5. Nian, Fuzhong & Hu, Chasheng & Yao, Shuanglong & Wang, Longjing & Wang, Xingyuan, 2018. "An immunization based on node activity," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 228-233.
    6. Wang, Yanhui & Bi, Lifeng & Lin, Shuai & Li, Man & Shi, Hao, 2017. "A complex network-based importance measure for mechatronics systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 180-198.
    7. Hou, Jingrui & Chi, Ming & Li, Tao & Guan, Zhi-Hong & Luo, Kai & Zhang, Ding-Xue, 2019. "Spreading dynamics of SVFR online fraud information model on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    8. Huo, Liang’an & Cheng, Yingying & Liu, Chen & Ding, Fan, 2018. "Dynamic analysis of rumor spreading model for considering active network nodes and nonlinear spreading rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 24-35.
    9. Chen, Shanshan & Jiang, Haijun & Li, Liang & Li, Jiarong, 2020. "Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    11. Zhang, Yuhuai & Zhu, Jianjun, 2018. "Stability analysis of I2S2R rumor spreading model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 862-881.
    12. Liu, Jiawei & Ding, Jie, 2020. "Requesting for retweeting or donating? A research on how the fundraiser seeks help in the social charitable crowdfunding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    13. Wu, Jie & Deng, Qun & Han, Tao & Yang, Qing-Sheng & Zhan, Heng, 2019. "Bipartite tracking consensus for multi-agent systems with Lipschitz-Type nonlinear dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1360-1369.
    14. Huo, Liang’an & Cheng, Yingying, 2019. "Dynamical analysis of a IWSR rumor spreading model with considering the self-growth mechanism and indiscernible degree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    15. Chen, Jian & Yang, Lu-Xing & Yang, Xiaofan & Tang, Yuan Yan, 2020. "Cost-effective anti-rumor message-pushing schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    16. Brandi, Giuseppe & Di Clemente, Riccardo & Cimini, Giulio, 2018. "Epidemics of liquidity shortages in interbank markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 255-267.
    17. Zhang, Yuhuai & Zhu, Jianjun, 2019. "Dynamic behavior of an I2S2R rumor propagation model on weighted contract networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    18. Huo, Hai-Feng & Cui, Fang-Fang & Xiang, Hong, 2018. "Dynamics of an SAITS alcoholism model on unweighted and weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 249-262.
    19. Graef, John R. & Kong, Lingju & Ledoan, Andrew & Wang, Min, 2020. "Stability analysis of a fractional online social network model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 625-645.
    20. Hu, Sen & Hu, Bin & Cao, Ya, 2018. "The wider, the better? The interaction between the IoT diffusion and online retailers’ decisions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 196-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:497-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.