IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v53y2012i1p207-226.html
   My bibliography  Save this article

Convergence of the forward-backward sweep method in optimal control

Author

Listed:
  • Michael McAsey
  • Libin Mou
  • Weimin Han

Abstract

The Forward-Backward Sweep Method is a numerical technique for solving optimal control problems. The technique is one of the indirect methods in which the differential equations from the Maximum Principle are numerically solved. After the method is briefly reviewed, two convergence theorems are proved for a basic type of optimal control problem. The first shows that recursively solving the system of differential equations will produce a sequence of iterates converging to the solution of the system. The second theorem shows that a discretized implementation of the continuous system also converges as the iteration and number of subintervals increases. The hypotheses of the theorem are a combination of basic Lipschitz conditions and the length of the interval of integration. An example illustrates the performance of the method. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Michael McAsey & Libin Mou & Weimin Han, 2012. "Convergence of the forward-backward sweep method in optimal control," Computational Optimization and Applications, Springer, vol. 53(1), pages 207-226, September.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:1:p:207-226
    DOI: 10.1007/s10589-011-9454-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-011-9454-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-011-9454-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C.Y. Kaya & J.L. Noakes, 2003. "Computational Method for Time-Optimal Switching Control," Journal of Optimization Theory and Applications, Springer, vol. 117(1), pages 69-92, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerome Niyirora & Jamol Pender, 2016. "Optimal staffing in nonstationary service centers with constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 615-630, December.
    2. Alessandro Ramponi & Maria Elisabetta Tessitore, 2024. "Optimal Social and Vaccination Control in the SVIR Epidemic Model," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
    3. Torre, Davide La & Liuzzi, Danilo & Marsiglio, Simone, 2021. "Transboundary pollution externalities: Think globally, act locally?," Journal of Mathematical Economics, Elsevier, vol. 96(C).
    4. Akinlotan, Morenikeji Deborah & Mallet, Daniel G. & Araujo, Robyn P., 2020. "An optimal control model of the treatment of chronic Chlamydia trachomatis infection using a combination treatment with antibiotic and tryptophan," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    5. Alessandro Ramponi & Maria Elisabetta Tessitore, 2022. "The economic cost of social distancing during a pandemic: an optimal control approach in the SVIR model," Papers 2208.04908, arXiv.org.
    6. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    7. Tian, Xiaohong & Xu, Rui & Lin, Jiazhe, 2019. "Mathematical analysis of a cholera infection model with vaccination strategy," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 517-535.
    8. La Torre, Davide & Liuzzi, Danilo & Marsiglio, Simone, 2021. "Epidemics and macroeconomic outcomes: Social distancing intensity and duration," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    9. La Torre, Davide & Liuzzi, Danilo & Marsiglio, Simone, 2015. "Pollution diffusion and abatement activities across space and over time," Mathematical Social Sciences, Elsevier, vol. 78(C), pages 48-63.
    10. Soukaina, Ben Rhila & Imane, Agmour & Mostafa, Rachik & Naceur, Achtaich & Youssef, El Foutayeni, 2022. "Optimal control of a phytoplankton-zooplankton spatiotemporal discrete bioeconomic model," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Liu, Yujing & Ding, Li & An, Xuming & Hu, Ping & Du, Fuying, 2020. "Epidemic spreading on midscopic multi-layer network with optimal control mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    12. Wang, Jinling & Jiang, Haijun & Hu, Cheng & Yu, Zhiyong & Li, Jiarong, 2021. "Stability and Hopf bifurcation analysis of multi-lingual rumor spreading model with nonlinear inhibition mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    13. Bruno Buonomo, 2015. "Modeling ITNs Usage: Optimal Promotion Programs Versus Pure Voluntary Adoptions," Mathematics, MDPI, vol. 3(4), pages 1-14, December.
    14. Liu, Fangzhou & Zhang, Zengjie & Buss, Martin, 2019. "Robust optimal control of deterministic information epidemics with noisy transition rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 577-587.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Y. Kaya & J. M. Martínez, 2007. "Euler Discretization and Inexact Restoration for Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 134(2), pages 191-206, August.
    2. C. Kaya & Helmut Maurer, 2014. "A numerical method for nonconvex multi-objective optimal control problems," Computational Optimization and Applications, Springer, vol. 57(3), pages 685-702, April.
    3. Xiang Wu & Kanjian Zhang & Changyin Sun, 2013. "Parameter Tuning of Multi-Proportional-Integral-Derivative Controllers Based on Optimal Switching Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 454-472, November.
    4. Yi Jiang & Yi He & Jie Sun, 2011. "Subdifferential properties of the minimal time function of linear control systems," Journal of Global Optimization, Springer, vol. 51(3), pages 395-412, November.
    5. Nahid Banihashemi & C. Yalçın Kaya, 2013. "Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 726-760, March.
    6. Elisha R. Pager & Anil V. Rao, 2022. "Method for solving bang-bang and singular optimal control problems using adaptive Radau collocation," Computational Optimization and Applications, Springer, vol. 81(3), pages 857-887, April.
    7. Kaya, C. Yalcin, 2004. "Time-optimal switching control for the US cocaine epidemic," Socio-Economic Planning Sciences, Elsevier, vol. 38(1), pages 57-72, March.
    8. Wenhui Luo & Xuewen Tan & Xiufen Zou & Qing Tan, 2023. "Optimal Treatment of Prostate Cancer Based on State Constraint," Mathematics, MDPI, vol. 11(19), pages 1-17, September.
    9. K. H. Wong & H. W. J. Lee & C. K. Chan & C. Myburgh, 2013. "Control Parametrization and Finite Element Method for Controlling Multi-species Reactive Transport in an Underground Channel," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 168-187, April.
    10. G. Vossen, 2010. "Switching Time Optimization for Bang-Bang and Singular Controls," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 409-429, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:1:p:207-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.