IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v450y2016icp649-656.html
   My bibliography  Save this article

An epidemic spreading model on adaptive scale-free networks with feedback mechanism

Author

Listed:
  • Li, Tao
  • Liu, Xiongding
  • Wu, Jie
  • Wan, Chen
  • Guan, Zhi-Hong
  • Wang, Yuanmei

Abstract

A SIRS epidemic model with feedback mechanism on adaptive scale-free networks is presented. Using the mean field theory the spreading dynamics of the epidemic is studied in detail. The basic reproductive number and equilibriums are derived. Theoretical results indicate that the basic reproductive number is significantly dependent on the topology of the underlying networks. The existence of equilibriums is determined by the basic reproductive number. The global stability of disease-free equilibrium and the epidemic permanence are proved in detail. The feedback mechanism cannot change the basic reproductive number, but it can reduce the endemic level and weaken the epidemic spreading. Numerical simulations confirmed the analytical results.

Suggested Citation

  • Li, Tao & Liu, Xiongding & Wu, Jie & Wan, Chen & Guan, Zhi-Hong & Wang, Yuanmei, 2016. "An epidemic spreading model on adaptive scale-free networks with feedback mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 649-656.
  • Handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:649-656
    DOI: 10.1016/j.physa.2016.01.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116000844
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Meng & Chen, Guanrong & Fu, Xinchu, 2011. "A modified SIS model with an infective medium on complex networks and its global stability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2408-2413.
    2. Zhang, Jiancheng & Sun, Jitao, 2014. "Stability analysis of an SIS epidemic model with feedback mechanism on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 24-32.
    3. Chun-xi Yang & Ling-yun Huang & Hao Zhang & Wang Hua, 2016. "Multirate parallel distributed compensation of a cluster in wireless sensor and actor networks," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(1), pages 1-13, January.
    4. Ababou, M. & Vandewalle, N. & Moussa, N. & El Bouziani, M. & Ludewig, F., 2013. "Spreading of periodic diseases and synchronization phenomena on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2526-2531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Xueyu & Cai, Zhiqiang & Si, Shubin & Duan, Dongli, 2021. "Analysis of epidemic vaccination strategies on heterogeneous networks: Based on SEIRV model and evolutionary game," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    2. Fu, Minglei & Yang, Hongbo & Feng, Jun & Guo, Wen & Le, Zichun & Lande, Dmytro & Manko, Dmytro, 2018. "Preferential information dynamics model for online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 993-1005.
    3. Liu, Yujing & Ding, Li & An, Xuming & Hu, Ping & Du, Fuying, 2020. "Epidemic spreading on midscopic multi-layer network with optimal control mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    4. Wei, Xiaodan & Xu, Gaochao & Zhou, Wenshu, 2018. "Global stability of endemic equilibrium for a SIQRS epidemic model on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 203-214.
    5. Zhu, Guanghu & Chen, Guanrong & Fu, Xinchu, 2017. "Effects of active links on epidemic transmission over social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 614-621.
    6. Jia, Nan & Ding, Li & Liu, Yu-Jing & Hu, Ping, 2018. "Global stability and optimal control of epidemic spreading on multiplex networks with nonlinear mutual interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 93-105.
    7. Li, Xiaofei & Ding, Deng, 2017. "Mean square exponential stability of stochastic Hopfield neural networks with mixed delays," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 88-96.
    8. Wei, Xiaodan & Xu, Gaochao & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability of endemic equilibrium of an epidemic model with birth and death on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 78-84.
    9. Li, Ruqi & Song, Yurong & Wang, Haiyan & Jiang, Guo-Ping & Xiao, Min, 2023. "Reactive–diffusion epidemic model on human mobility networks: Analysis and applications to COVID-19 in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    10. Wan, Chen & Li, Tao & Zhang, Wu & Dong, Jing, 2018. "Dynamics of epidemic spreading model with drug-resistant variation on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 17-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Xiaodan & Zhao, Xu & Zhou, Wenshu, 2022. "Global stability of a network-based SIS epidemic model with a saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    2. Li, Jingjing & Zhang, Yumei & Man, Jiayu & Zhou, Yun & Wu, Xiaojun, 2017. "SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 740-749.
    3. Li, Chun-Hsien, 2015. "Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 234-243.
    4. Wei, Xiaodan & Xu, Gaochao & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability of endemic equilibrium of an epidemic model with birth and death on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 78-84.
    5. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    6. Leyi Zheng & Longkun Tang, 2019. "A Node-Based SIRS Epidemic Model with Infective Media on Complex Networks," Complexity, Hindawi, vol. 2019, pages 1-14, February.
    7. Sanders, Johnathan & Noble, Benjamin & Van Gorder, Robert A. & Riggs, Cortney, 2012. "Mobility matrix evolution for an SIS epidemic patch model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6256-6267.
    8. Dong, Suyalatu & Deng, Yanbin & Huang, Yong-Chang, 2019. "Exact analytic solution to nonlinear dynamic system of equations for information propagation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 319-329.
    9. Yang, Ming-Yuan & Wu, Zhen-Guo & Wu, Xin & Li, Sai-Ping, 2024. "Influential risk spreaders and systemic risk in Chinese financial networks," Emerging Markets Review, Elsevier, vol. 60(C).
    10. Wu, Yingbo & Li, Pengdeng & Yang, Lu-Xing & Yang, Xiaofan & Tang, Yuan Yan, 2017. "A theoretical method for assessing disruptive computer viruses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 325-336.
    11. Wang, Yanhui & Bi, Lifeng & Lin, Shuai & Li, Man & Shi, Hao, 2017. "A complex network-based importance measure for mechatronics systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 180-198.
    12. Xu, Degang & Xu, Xiyang & Yang, Chunhua & Gui, Weihua, 2017. "Spreading dynamics and synchronization behavior of periodic diseases on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 544-551.
    13. Juang, Jonq & Liang, Yu-Hao, 2015. "Analysis of a general SIS model with infective vectors on the complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 382-395.
    14. Qu, Leilei & Gao, Xubin & Kang, Baolin & He, Mingfeng & Pan, Qiuhui, 2019. "Population dynamics models based on the transmission mechanism of MCR-1," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 310-323.
    15. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    16. Wang, Jinling & Jiang, Haijun & Hu, Cheng & Yu, Zhiyong & Li, Jiarong, 2021. "Stability and Hopf bifurcation analysis of multi-lingual rumor spreading model with nonlinear inhibition mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    17. Zhang, Tianrui & Yang, Lu-Xing & Yang, Xiaofan & Wu, Yingbo & Tang, Yuan Yan, 2017. "Dynamic malware containment under an epidemic model with alert," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 249-260.
    18. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    19. Liu, Qiming & Li, Hua, 2019. "Global dynamics analysis of an SEIR epidemic model with discrete delay on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 289-296.
    20. Wei, Xiaodan & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability and attractivity of a network-based SIS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 789-798.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:649-656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.